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ABSTRACT

Three experiments addressing the assessment of perceived
image quality in a patch-based manner are compared for
HEVC compression artifacts. It is shown that image patches
of a size small as 128x128 pixel are large enough to eval-
uate the perceived image quality in a Degradation Category
Rating (DCR) setting. Ratings obtained with 128x128 pixel
sized images patches and 512x512 pixel sized images of the
same spatial statistics show a correlation of r=0.99. Based on
this finding, image quality assessment of 128x128 pixel sized
image patches degraded by HEVC compression is compared
for controlled lab environment and uncontrolled crowdsourc-
ing settings. Although we find high overall correlation be-
tween the quality ratings obtained in the two environments,
observers tend to give worse ratings in the crowdsourcing set-
ting and for conditions of higher quality a reduction of cor-
relation is observed. These findings have implications for
choosing controlled vs. uncontrolled viewing conditions for
image quality assessment for real-life applications.

Index Terms— image quality assessment, image coding,
psychophysics, quality rating, crowdsourcing, mean opinion
score, perception threshold, HEVC

1. INTRODUCTION

A huge amount of data generated, stored and transmitted to-
day is visual information such as images or videos. In order
to allow for transmission or storage at bit rates suitable for to-
day’s channels or storage devices, these signals are digitized
and usually compressed. Compression not only decreases the
number of bits used for the representation of the source sig-
nal, but also introduces distortions into the signal visible to
humans. Thus, an encoder balances the trade-off between bit
rate and distortion. Typically, in modern image and video
coding algorithms such as the state-of-the-art High Efficiency
Video Codec (HEVC) [1], this trade-off is decided on in a
block-wise manner, as the image or video signal is subdivided
into image or frame blocks to be encoded in succession.

In most multimedia systems, humans are the ultimate re-
ceiver of processed and/or transmitted signals. Evidently, the

measurement of visual quality degradation is essential in most
video transmission systems, e.g. for controlling the encoder
or for the assessment of quality properties of a whole trans-
mission system. For multimedia applications within the scope
of entertainment, the operational point of an image or video
transmission system is usually desired to be close to the per-
ception threshold at the lowest possible bit rate in order to
provide the consumer a high quality of experience in terms
of visual quality, latency and storage size. However, the de-
termination of this operational point is still a challenge as no
satisfying measure for visual quality is at hand.

Although the field of image and video quality assessment
has been studied for many years, the question of how to quan-
tify visual quality (or reversely phrased: visual distortion)
computationally remains unsatisfyingly answered. Hence, for
testing the performance of computational quality estimators
and to quantify novel kinds of distortion, psychophysical tests
are commonly performed in order to provide ground truth in
terms of quantified perceived quality.

In such psychophysical experiments, a human observer is
presented with a stimulus and gives an overt response regard-
ing the perceived quality of the stimuli. The typical proce-
dure in any of these experiments is that the human observer
has to rank or rate the quality of a set of test images and/or
videos. This may be done with or without showing an explicit
or hidden reference. These subjective tests are widely used in
practice, e.g. for the evaluation of image and/or video trans-
mission systems, and provide quantitative quality assessments
for visual signals when averaged over many human observers.
Quantified visual quality is then usually referred to and re-
ported as Mean Opinion Score (MOS). Such subjective test-
ing methodologies have been formalized by the International
Telecommunication Union (ITU) in [2, 3] and more elabo-
rated methods are still an ongoing research area. However,
for the sake of reproducibility, those tests are usually per-
formed in a laboratory environment under highly controlled
viewing conditions [2, 3]. Since multimedia content in real
life is usually not consumed under laboratory conditions but
in e.g. living-room-like environments, it can be argued that
psychophysical tests performed in a lab are somewhat unnat-



Fig. 1: Image patches used in the experiments. First row: Patches cropped from texture images. Middle and bottom rows:
Patches cropped from images with real life content.

ural. As experiments should not take more than 30 minutes in
order to prevent observers from becoming unreliable because
of fatigue, the number of possible conditions (image/quality
pairs) that can be evaluated in one test is restricted. The ef-
fort of psychophysical tests is further increased by the need
of having ratings of sufficient (15 is recommended in [2])
participants. Being lab-bounded and the need for an exper-
imenter limits the possibilities to parallelize those tests, con-
fining them to the domain of small data.

In order to delegate the assessment of perceived visual
quality into the big data domain, it has been suggested to
crowdsource the evaluation (e.g. in [4] for listening test and
in [5] for visual quality). Here, the basic idea is to bring the
stimuli over the internet to many participants and let them
evaluate the perceived quality browser-based at their home
PCs in a non-lab environment. This allows for a massive
parallelization as the bottleneck of the laboratory access is
brought out of consideration. This means that the viewing
conditions of the test participants are not only uncontrolled,
but that the experimenter is also uninformed about them. On
the other hand it can be argued that the viewing conditions
in a crowdsourcing approach are closer to those of a real-life
multimedia consumer and thus more natural. Several systems
for crowdsourcing image and video quality assessment have
been presented [4, 5, 6, 7, 8, 9, 10, 11] and overviewed in
[12]. In general, high correlations between quality ratings in
terms of mean opinion scores obtained in the lab and obtained
by crowdsourcing have been reported, indicating the feasibil-
ity of the crowdsourcing approach to image and video quality
assessment.

So far, psychophysical quality assessment has been per-

formed on whole images only and, to the knowledge of the
authors, no studies on patch-based approaches to image qual-
ity assessment in order to learn about locality of quality have
been carried out.

This paper aims at patch-based quality assessment, as this
perspective is closer to the optimization in real-life block-
based video and image coding. For that, we present three
quality assessment studies. Sec. 2 describes the experimental
setup and the stimulus material of these studies. In Sec. 3,
at first we analyze whether quality assessment is possible for
relatively small patches of a size of 128 × 128 pixels. Then
image quality assessment under controlled lab conditions is
compared to crowdsourced image quality assessment for im-
age patches of 128× 128 pixel. Sec. 4 concludes the compar-
isons and discusses implications for practitioners.

2. EXPERIMENTAL DESIGN

2.1. Stimulus Material

In the first experiment, MOS values for 6 texture images used
in [13, 14, 15] were obtained under lab-conditions.

For the other two experiments, the 18 image patches used
as stimuli had two sources. In order to test if the assessment
of perceived image quality based on rather small 128 × 128
pixel sized image patches is valid, 6 patches were cropped
from 512 × 512 pixel sized texture images from the first ex-
periment. Texture images were chosen for this test. Due to the
relative homogeneous structure of textures, cropping does not
alter the image statistics. The other 12 patches were cropped
from 1920×1080 pixel sized natural grayscale images, show-



Fig. 2: Example of distorted images used in both experiments.

Fig. 3: Screenshot of the rating screen used in the online and
the lab quality assessment experiment.

ing real life content. Fig. 1 shows the reference image patches
used in the test. Those images were degraded to different dis-
tortion levels. The distortions were introduced by encoding
the images using the HM13.0 [16] test model of the High Effi-
ciency Video Coding (HEVC/H.265) standard [1] using Intra
only-settings [17] and different quantization parameters (QP).
We refer to an image of a specific size and of a specific distor-
tion level used in the experiments as (test) condition. For all
conditions, image patches were cropped from the compressed
and thus distorted images. No image patch was scaled after
cropping and thus preserving the local statistics of the original
images.

Fig. 2 gives an impression over the distortions presented
in the test. As the study’s goal is to learn more about image
distortions close to the perception threshold, the density of
test images was higher in the upper end of the quality scale.

2.2. Experimental Setup

Two different experimental setups were used: A laboratory-
based, controlled setup and an uncontrolled, online (or:
crowdsourced) setup. In the first experiment, the perceived
quality of the distorted 512 × 512 pixel sized texture images
was assessed lab-based. In the other two experiments, the
128 × 128 pixel sized image patches were used as stimuli in

a lab-based, and in an online experiment, respectively.
In all experiments, the quality assessment followed a

Degradation Category Rating (DCR) procedure using Simul-
taneous Presentation [2]. Image pairs were presented side-
by-side with the distorted image on the right hand side and
the undistorted reference image on the left hand side within
a 50% gray background. The presentation of the stimuli was
self-paced in both cases, leaving the duration of evaluation to
the observers. On the right of the screen, a slider operated by
a computer mouse was shown to let the observer report his or
her quality evaluation. A screenshot of the stimulus presenta-
tion screen is shown in Fig.3.
A nine-grade degradation scale was used where the ratings 1,
3, 5, 7 and 9 corresponded to the semantic annotations Very
annoying, Annoying, Slightly annoying, Perceptible, but not
annoying and Imperceptible, respectively. In this scale, grade
8 is considered as the psychophysical perception threshold of
the impairment [2].
Learning effects were reduced by including a training session
in which 5 stimuli were presented at the beginning of each
session. Stimuli presented during the training session were
not included in the statistical analysis of the test results. In
the test session, every condition’s presentation was replicated
once, resulting in two presentations per condition per session.
Before evaluating the collected quality ratings, subjects were
screened for reliability according to BT.500 [2].

In order to make the online and lab-based experiments
comparable, subjects were introduced in all experiments with
the same instructions (although an experimenter was present
during the lab sessions) with two successive texts on screen.
In these texts, participants were welcomed, the test procedure
was explained and subjects were asked to reset the zooming
factor of their browsers and maintain a constant viewing dis-
tance.

In all tests, subjects were recruited mainly among stu-
dents at the department and friends or acquaintances of the
lab members and not compensated for their participation.

2.2.1. Lab-based Image Quality Assessment

For the lab-based image quality assessment experiment, view-
ing conditions were controlled in a lab environment and set
according to ITU recommendation BT.500 [2], and P.910 [3],
respectively. Stimuli were presented on a calibrated 27′′ Dell
U2711b display at its native resolution of 2560× 1440 pixel.
Viewing distance was set to 1 meter, which corresponds to 4
times of the active screen size of the images (relative to the
original image size of 1920 × 1080 pixel) where the patches
where cropped from. Relative to the patch size of 128 × 128
pixels, this corresponds to a visual angle of the α = 1.72◦.

2.2.2. Crowdsourcing Image Quality Assessment

For the crowdsourced image quality assessment, the same
test was delivered to participants over the internet and quality



ratings were reported online through a browser application.
Since being out of the lab is inherent to the crowdsourcing
approach to image quality assessment, precise viewing con-
ditions, such as screen resolution, contrast and luminance set-
tings, viewing distance and environment illumination, are un-
certain.

3. EVALUATION

Neither in the online nor in the lab-based tests subjects had to
be rejected after screening [2]. For all evaluations, perceived
quality is calculated in terms of mean opinion scores (MOS)
and is calculated per condition as the average of all subjects
ratings [2].

3.1. Patch-Based Quality Assessment

Pearson correlation between MOS values obtained under lab
conditions for 128 × 128 and 512 × 512 pixel sized texture
images is found as rP = 0.99, p < 0.01. Spearman rank
order correlation is measured as rS = 0.96, p < 0.01. Fig. 4
scatters the MOS values of both tests. The high correlation
between the MOS values obtained for the two different image
patch sizes shows the validity of quality assessment based on
128× 128 pixel sized image patches.
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Fig. 4: MOS values obtained for 128×128 pixel sized texture
image patches vs. MOS values obtained for 512 × 512 pixel
sized texture image patches

3.2. Lab-Based vs. Crowdsourced Quality Assessment

For the further evaluation, the ratings gathered in the lab-
based assessment are considered as ground truth in the sense
that the crowdsourced online assessment is desired to predict
the results obtained in the lab.

Fig. 5 plots the normalized averaged 0.95%-confidence
interval for the MOS values obtained under lab conditions
(labMOS) and those obtained in a crowdsourcing, online ap-
proach (webMOS) in dependence of the number of obser-
vances (since participants in the online test were free to quit
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Fig. 5: Normalized averaged 0.95%-confidence interval in de-
pendance of the number of ratings.

the quality evaluation any time, we choose ’observances’ or
’number of individual ratings’ to be more meaningful than the
commonly used parameter ’number of observers’ in order to
make the two modalities comparable). Assuming Gaussianity
of the ratings, the 0.95%-confidence interval is therefore cal-
culated for each condition as CI(c,N) = tN−1,0.95 · σc√

N
with

tN−1,0.95 being the value of Student’s t distribution according
to a two-sided 0.95%-critical regions with N − 1 degrees of
freedom, σc being the standard deviation of condition c and
N being the number of observances. The conditions CI(c,N)
are then averaged over all conditions using bootstrapping by
averaging confidence intervals of randomly resampled per-
mutations of subsets of N observances. Normalization is
performed with respect to the range of possible ratings to
make the confidence interval comparable to other rating scale
ranges. The normalized, averaged confidence intervals fall in
the range of previous studies [18], indicating a reliable sta-
tistical power in terms of number of subjects/observances in
these studies. As Fig. 5 shows, according to the confidence
interval, among the two methods, the online assessment of
perceived image quality provides a more accurate estimate of
MOS than the lab-based assessment given the same number of
observances. This is an interesting and puzzling result, since,
intuitively, one would assume the crowdsourced environment
to be less controlled, leading to a wider range on quality opin-
ion, leading to a higher variance and thus, for the same num-
ber of ratings, resulting in a higher confidence interval.

Fig. 6 shows the distribution of individual ratings col-
lected in the lab-based assessment (blue histogram) and in the
crowdsourced online assessment (red histogram). The distri-
bution of the rating obtained in the lab are as expected: due to
the choice of the study the distribution histogram is skewed
to the right (higher quality). Mid-points between semanti-
cally annotated rating values (2,4,6,8) are less frequently se-
lected by the observers than semantically annotated ratings
(1,3,5,7,9). Similar rating behavior is reported in comparisons
of other image quality assessment procedures [18]. The dis-
tribution of individual opinion scores collected in the online
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Fig. 6: Distribution of individual quality ratings in lab-based
experiment (blue) and crowdsourced experiment (red).

experiment is less skewed, but almost follows a uniform dis-
tribution for the semantically annotated rating values (or the
mid-points, respectively), while again, the mid-points are less
often selected.
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Fig. 7: Online assessed MOS vs. lab-based assessed MOS
for the full quality regime (left) and the high quality regime
zoomed in (right). The green dashed line indicates the hypo-
thetical identity of labMOS and webMOS.

The tendency of online assessment towards worse quality
ratings compared with scores obtained in the lab environment
can be seen in the left plot of Fig. 7 as well: The MOS values
obtained for different conditions (image/distortion pairs) in
the lab are scattered against MOS values gathered in the on-
line test. The green bisecting line indicates hypothetical iden-
tity of the MOS values gathered in the different modalities.
The plot indicates that the online assessed MOS as predictor
of the lab-based assessed MOS has a negative bias that is not
constant. For conditions of a labMOS > 7 this bias does not
exist.

However, although the MOS values from the lab and those
from the online experiment are not identical, over the whole
range of conditions, a Pearson correlation of rP = 0.96,
p < 0.001 and a Spearman rank correlation of rS = 0.96,
p < 0.001 can be measured. This is in line with previous
studies [7, 5] reporting similar high correlations between the
MOS values obtained in a lab experiment and in an online
experiment.

The right plot in Fig. 7 shows the labMOS plotted against
the webMOS for the high quality regime. We define all condi-
tions to be within this regime if labMOS > 6 or webMOS >
6. Here, we find the MOS values obtained in the two modal-
ities to be more scattered. Also, the correlations (rP = 0.8
with p < 0.001, rS = 0.74 with p < 0.001) are strongly
reduced compared to the full range of conditions.
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Fig. 8: Standard deviation of opinion scores (SOS) in depen-
dance of MOS for online and lab-based assessed quality vs.
lab-bases assessed MOS. The gray shaded area indicates the
possible SOS values.

As argued in [19], it is not sufficient to compare MOS
values in order to compare test results, since condition-wise
differences in dispersion of individual ratings are not taken
into account. In Fig. 8, the standard deviation of the opinion
scores (SOS) of the two modalities (blue: lab, red: online)
is scattered against the labMOS values. For the low quality
regime (defined as labMOS < 6), we find the quality ratings
obtained in the lab environment to have a bias towards higher
dispersion compared to the those obtained in a crowdsourc-
ing setting. This also explains the higher average confidence
interval observed in Fig. 5.

4. DISCUSSION AND CONCLUSIONS

This paper discussed the feasibility of patch-based image
quality assessment and found that humans can evaluate per-
ceived quality on patch size of 128× 128. For image patches
of this size image quality assessment in a controlled labora-
tory environment are compared to image quality assessment
in an uncontrolled crowdsourcing setting. We find quality rat-
ings obtained as webMOS and labMOS to be of compara-
ble statistical power. Although the quality ratings obtained in
the two different environments are highly correlated over the
whole range of conditions, quality ratings obtained by crowd-
sourcing show a bias towards lower ratings given the same
conditions compared to quality ratings gathered under con-
trolled lab conditions. We also find a clear drop in correlation
when we compare only conditions in a regime of high quality.

A possible explanation for the bias might be that people



in the online setting adapt to the stimulus, e.g. by adjusting
the viewing distance to the specific task (in the study’s case:
detection and evaluation of image degradation) and stimulus
distortion. This can also explain the confidence intervals of
the webMOS to be lower than the one of the labMOS. As
the condition specific inter-subject dispersion of the webMOS
is not higher than the one of the labMOS, it can be argued
that the bias indicates the crowdsourcing approach estimates
some ’lower bound’ of perceived quality of a specific condi-
tion. When designing image quality assessment studies, this
is to be kept in mind. Thus, future work should investigate re-
producibility of results obtained by crowdsourcing compared
to those obtained in controlled lab settings.

Our next studies will further evaluate the influence of dif-
ferent image patch sizes to image quality assessment. A ques-
tion directly connected to the image patch size is how image
quality gets pooled along different dimensions such as spa-
tial position, scale and time. Effects found and studied psy-
chophysically should also be evaluated in psychophysiologi-
cally oriented experimental settings using EEG [13, 14, 15].
By learning more about the different aspects of stimulus lo-
cality, block-based coding schemes might be improved sig-
nificantly.
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[4] F. Ribeiro, D. Florêncio, C. Zhang, and M. Seltzer,
“CROWDMOS: An approach for crowdsourcing mean
opinion score studies,” in ICASSP, 2011, pp. 2416–
2419.

[5] F. Ribeiro, “Crowdsourcing subjective image quality
evaluation,” in ICIP, 2011, pp. 3158–3161.

[6] D. Ghadiyaram and A. C. Bovik, “Massive Online
Crowdsourced Study of Subjective and Objective Pic-
ture Quality,” arXiv:1511.02919, 2015.

[7] C. Keimel, J. Habigt, C. Horch, and K. Diepold, “Qual-
itycrowda framework for crowd-based quality evalua-
tion,” in PCS, 2012, pp. 245–248.

[8] Q. Xu, Q. Huang, and Y. Yao, “Online crowdsourcing
subjective image quality assessment,” in ACM Int. Conf.
Multimed., 2012, pp. 359–368.

[9] C. Keimel, J. Habigt, C. Horch, and K. Diepold, “Video
quality evaluation in the cloud,” in Pack. Video Work.,
2012, pp. 155–160.

[10] O. Figuerola Salas, V. Adzic, and H. Kalva, “Subjec-
tive quality evaluations using crowdsourcing,” PCS, pp.
418–421, 2013.

[11] O. Figuerola Salas, V. Adzic, A. Shah, and H. Kalva,
“Assessing internet video quality using crowdsourcing,”
CrowdMM, pp. 23–28, 2013.

[12] T. Hoßfeld, M. Hirth, P. Korshunov, P. Hanhart,
B. Gardlo, C. Keimel, and C. Timmerer, “Survey of
Web-based Crowdsourcing Frameworks for Subjective
Quality Assessment,” in MMSP, 2014, pp. 22–24.

[13] L. Acqualagna, S. Bosse, A. K. Porbadnigk, G. Curio,
K.-R. Müller, T. Wiegand, and B. Blankertz, “EEG-
based classification of video quality perception using
steady state visual evoked potentials (SSVEPs),” Jour-
nal of Neural Engineering, vol. 12, no. 2, 2015.

[14] S. Bosse, L. Acqualagna, A. K. Porbadnigk,
B. Blankertz, G. Curio, K.-R. Muller, and T. Wie-
gand, “Neurally informed assessment of perceived
natural texture image quality,” in ICIP, 2014, pp.
1987–1991.

[15] S. Bosse, L. Acqualagna, A. K. Porbadnigk, G. Curio,
K.-R. Müller, B. Blankertz, and T. Wiegand, “Neu-
rophysiological assessment of perceived image quality
using steady-state visual evoked potentials,” in SPIE
Optical Engineering+ Applications, 2015, pp. 959914–
959914.

[16] JCT-VC, “Subversion Repository for the HEVC Test
Model reference software,” 2014.

[17] F. Bossen, “Common test conditions and software refer-
ence configurations,” document JCTVC-H1100 of JCT-
VC, 2012.

[18] D. M. Rouse, R. Pépion, P. Le Callet, and S. S. Hemami,
“Tradeoffs in subjective testing methods for image and
video quality assessment,” in IS&T/SPIE Electr. Imag.,
2010, pp. 75270F–75270F.

[19] T. Hoßfeld, R. Schatz, and S. Egger, “SOS : The MOS
is not enough,” in QoMEX. IEEE, 2011, pp. 131–136.


