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Abstract—The assessment of perceived multimedia quality is
a central research field in information and media technology.
Conventionally, psychophysical techniques are used for determin-
ing the quality of multimedia signals. Recently, Brain-Computer
Interfacing (BCI)-based methods have been proposed for the
assessment of perceived multimedia signal quality. In this paper
we give an overview over the shortcomings of conventional
approaches, present the state-of-the art of BCI-based methods
and discuss open questions and challenges relevant to the BCI
community.

I. INTRODUCTION

Balancing resources such as channel bandwidth, system
complexity or production costs in order to provide the user
with optimal signal quality is a crucial task when it comes
to the design of multimedia systems. For most multimedia
systems, the ultimate receiver is human and, thus, signal
quality should be evaluated in a perceptual relevant manner in
order to achieve best user experience. However, the formation
of user experience is still not sufficiently understood. For the
evaluation of multimedia systems or for testing hypotheses,
researchers and engineers in the field of quality assessment
(QA) rely on behavioral experiments during which subjects
give overt responses to specific stimuli.

Recently, BCI entered a broader scope of definition and
monitoring and decoding the mental state of humans became
an active research field [1]. As mental states are reflectances of
sensation, perception and decision making, this makes BCI a
perfect candidate to provide insights into the neural processing
of quality experience. It might further ease, refine or even
replace conventional behavioral test procedures, and allow for
real-time quality monitoring in immersive environments such
as virtual reality (VR) without breaking the impression of
immersiveness by asking users for their current experience.

This paper aims at providing an overview on BCI-based
multimedia quality assessment and identifying challenges in
this emerging field that are relevant for the BCI-community.
A summary on commonly used behavioral methods and their
drawbacks is given in Sec. II. Sec. III outlines approaches
to assess the quality of different signal modalities. The paper
concludes in Sec. IV with a discussion of open questions and
current challenges in BCI-based QA.

II. CONVENTIONAL PSYCHOPHYSICAL MULTIMEDIA
QUALITY ASSESSMENT

Traditionally, perceived quality of multimedia signals or
systems is assessed in psychophysical subjective tests. In these
experiments a human observer is asked to give a judgement
on the perceived quality of a multimedia signal presented.
Methodologies of such subjective testing are formalized by
the International Telecommunication Union (ITU), e.g. for
television applications in [2], for multimedia applications in
[3], and in [4] for speech quality. These formalizations (or
in ITU terminology Recommendations) comprise the view-
ing (such as viewing distance and background illuminations)
and/or listening (such as reverberation time or environmental
noise) conditions as well as experimental parameters such
as stimulus presentation methods, category scales and scale
annotations, and processing and reporting of the collected data.

Stimuli can be presented in a single stimulus manner one
stimulus at a time, where the subject is asked after each
presentation to give his or her rating. This procedure is called
absolute category scaling (ACR) [3] and can be performed
with or without presentation of a hidden reference (ACR-HR).
Stimuli can also be presented in pairs, where the first stimulus
is always the undistorted source reference and the second
stimulus the distorted source under test. This method is called
degradation category scaling (DCR) [3] or double stimulus
impairment scaling (DSIS) [2] and provides a higher sensitiv-
ity for test stimuli with degradations close to the perception
threshold. For the quality assessment of visual media such as
images or video following a DCR procedure, the stimuli can
also be presented simultaneously. Rating scales for ACR and
DCR may be continuous or discrete and different numbers
of grades are mentioned in the recommendations. However,
recommended semantic annotations of the rating scales for
ACR are Bad, Poor, Fair, Good and Excellent and for DCR
Very annoying, Annoying, Slightly annoying, Perceptible but
not annoying and Imperceptible. In ACR stimuli are evaluated
against an implicit and in DCR against an explicit reference.
Other procedures of stimulus presentation in psychophysical
quality tests [5], [6] as well as rating scales and combinations
of these are still subject to research [7]. All these subjective
test procedures deliver quality assessments for multimedia
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Fig. 1. From behavioral studies to BCI-based quality assessment.

signals when averaged over many subjects. These averaged
assessments are then referred to as mean opinion score (MOS)
[8] and considered as ground truth, e.g. for evaluating objective
quality assessment algorithms.

In order to prevent observers from becoming unreliable
due to fatigue, experiments should not take longer than 30
minutes [2]. This restricts the number of possible conditions
that can be evaluated in one session and might make many
sessions necessary. The effort of psychophysical tests is further
increased by the need for having sufficient participants (15 is
recommended in [2], 24 in [9]).

This motivated researchers recently to delegate the as-
sessment of perceived multimedia quality to crowd-sourcing
approaches. Here, the stimuli are brought over the internet
to the participants and evaluated browser-based at their home
PC in a non-lab environment. By this, subjective tests can be
massively parallelized [10].

However, crowdsourced approaches and lab-based ap-
proaches share the drawback that ratings are highly variable
across subjects [9]; even the same subject is unlikely to
give the same rating to the same stimuli if asked repeat-
edly [11]. Thus, quality ratings collected in psychophysical
tests suffer strongly from label noise. Further, an individual
rating is the result of a conscious process and by this is
prone to subjective factors, such as decision strategies or
expectations [11]. Contextual biases may be introduced by the
experimental design, where the stimulus range or the stimulus
density can have an influence on the subject’s rating [12].
In general, psychological scales do not conform to the laws
of fundamental measurements known from natural sciences.
Semantic annotation of rating scales given to participants
during psychophysical tests may also fail at reflecting the
participant’s appraisal of the stimulus and by that mislead
the subject’s response. Another limitation of psychophysical
approaches to multimedia quality assessment is the restriction
to supra-threshold stimuli and the insensitivity to sub-threshold
stimuli. This is crucial when it comes to short-term assessment
of non-instantaneously perceivable phenomena such as visual
fatigue or nausea [13].

III. BRAIN COMPUTER INTERFACES FOR MULTIMEDIA
QUALITY ASSESSMENT

Today, electroencephalography (EEG) is one of the most
popular methods used for the acquisition of neural data in BCI.

Fig. 2. From an ERP study on video quality [16]: Grand average ERP plots
for different distortion levels. Top left: ERP for undistorted trials and the
different quality changes at channel CPz (distortion magnitude is increasing
from BL to QC-max). Top right: ERP for an intermediate distortion level for
one subject, subdivided in trials, where no distortion was reported (misses)
and trials, where a distortion was reported (hits). Bottom: Scalp topographies
for all channels. Each circle depicts a top view of the head, with the noise
pointing upwards. Colors code the mean voltage for the time interval from
400–700 ms after the introduction of a distortion into the video signal.

Since its first recording in 1924 by Hans Berger, EEG also has
a long history in cognitive psychology and cognitive science,
where it is used to study neural processing of sensory stimula-
tion (e.g. [14]). Here, neurophysiological approaches are com-
plementary to classical psychophysical ones (in fact, Gustav
Theodor Fechner already 1907 postulated inner psychophysics
as a neural foundation of outer psychophysics [15]). However,
as outlined in Sec. II, the conventional approach to multime-
dia QA follows the line of (outer) psychophysics. Recently,
multimedia engineers and researchers started to shift from
behavioral psychophysical experiments to studies addressing
inner psychophysics by adopting methods known from BCI
and machine learning to assess perceived quality of multimedia
signals or systems (Fig. 1).

A. Audio Signals

Audio signals, such as speech signals, where among the
first modalities studied in the context of EEG-based quality
assessment. In [18], event-related potentials (ERPs) are used as
a quantitative measure for perceived quality of audio signals.
As stimulus a phoneme /a/ at varying quality levels was
presented to the subjects for 160 ms. It is shown that the
latency of the P300 is decreasing, while the amplitude is
increasing with decreasing quality of the stimulus in an oddball
paradigm. By applying a classifier based on shrinkage linear
discriminant analysis (LDA) [19], [20], distortions below the
threshold of conscious perception are detected for 2 of 11
subjects. This work is extended in [21], where longer and
more realistic auditory stimuli of lengths of 200, 1200 and
8000 ms (phoneme, word, sentence) distorted by a real-world
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Fig. 3. From a SSVEP study on image quality assessment using a stimulation
frequency of 1.5 Hz [17]: Spectrum of EEG signal at Oz for increasing
distortion from top left to bottom right. On a dataset of 6 different source
images at 6 different distortion levels each a correlation between MOS and
amplitude at 6 Hz of |r| = 0.93 is reported.

transmission system were presented and similar effects as for
phoneme length stimuli are found. Due to the low signal-to-
noise ratio (SNR) of EEG signals, commonly a lot of trials
have to be collected. The authors of [22] explore single trial
methods for the analysis of neural correlates of speech quality
and the detection of perceived distortions. It is shown that
for auditory stimuli components reflecting the perception of
distortions are assessable in early components already. Further,
by combining behavioral and neural data, the sensitivity of the
experiment is significantly increased.

The influence of low-quality audio signals on fatigue is
studied in [23], where α- and θ-activity is shown to be
increased for audio signals subject to distortions introduced
by bandwidth limitations.

B. Visual Signals

1) 2D visual signals: The brain response to JPEG compres-
sion artifacts in images is studied in [24] based on an oddball
paradigm. As shown for speech signals, the elicited ERP
component is reduced in latency and increased in amplitude for
increasing visual quality. In follow-up studies, similar results
are reported for different kinds of artifacts in video clips
[25]. Fig. 2 shows typical ERP-responses and related scalp
topographies. Using principal component analysis (PCA) for
dimensionality reduction and support vector machine (SVM),
a classification accuracy of 76.5% for the most obvious and
of 73.5% for the less obvious distortions is reported in [26]
for trial correctly classified behaviorally. For different types of
distortion, mean single-trials classification accuracy of up to
85% for distorted vs. undistorted images is achieved in [27]
using a wavelet-based approach. In [16], recorded EEG data
is filtered by an LDA filter [19], [20]. Weights for the filter
are obtained based on the signed biserial correlation coeffi-
cients between trials with highest distortion and no distortion.
For distortion magnitudes above the behavioral perception

threshold, an area under the ROC curve (AUC) close to 1
is obtained. Although the classifications accuracies from [16],
[27], [26] refer only to trials correctly classified behaviorally,
for three subjects [16] also reports an average classifications
accuracy of 65% for trials with a quality degradation below the
behavioral perception threshold. As in [18] for speech signals,
this suggests the potential of EEG to assess also subconscious
processing of distortions in multimedia signals.

Similar results are reported in [28] for degradations intro-
duced as changes in color saturation and changes in maximum
luminance values of images.

It is known from other BCI-applications that systems us-
ing the steady-state visual evoked potential (SSVEP) have
advantages over ERP-based approaches. Given the broad-
band characteristic background noise in EEG and the narrow-
band characteristic of the SSVEP, SSVEPs achieve a high
SNR compared to ERPs [29]. Thus, in [30] image quality of
compressed images is assessed using an SSVEP-approach at a
stimulation frequency of 1.5 Hz. Using common spatial pattern
(CSP) for feature extraction on the EEG-signals filtered around
the 2nd and 4th harmonic (3 Hz and 6Hz) and applying LDA
for classification, mean accuracies of 84% are obtained for
the highest distortion level. It is also shown that the α-activity
predicts (Pearson correlation r ≈ −0.64) participant-wise
classification accuracy. Based on the same EEG-recording, in
[17], [31] a significant correlation of r = −0.93 between the
behaviorally assessed MOS values and the amplitude at the
4th harmonic (6 Hz) of the stimulation frequency at the Oz-
electrode is shown. The increase of the spectral amplitudes on
the harmonic frequencies with increasing level of distortion is
shown in Fig. 3.

2) 3D visual signals: In stereoscopic displays, depth im-
pression is created by presenting two images, captured or
rendered from a slightly offset camera positions, separately
to the left and right eye. Displays using shutter glasses
trade in temporal resolution for depth impression, as the two
images are alternated on screen while the shutter glasses
open and close correspondingly. Polarization-based systems
present frames on screen polarized pixelwise alternating in
different circular directions. Light polarized in one or the
other directions passes the according glass and enters the
corresponding eye. By this, depth impression is traded in
for luminance. Additional to the distortions known from 2D
visual signals, the perceived quality of 3D visual signals can
be affected by crosstalk, misalignment of the stereo image
pair (e.g. vertical disparities) or the vergence-accommodation
conflict [13]. The neural workload imposed to the viewer may
result in visual discomfort or fatigue that might not become
conscious within an instant [13]. [32] evaluates the relation
between the power in different oscillatory neural bands and
MOS values for 3D videos subject to compression artifacts.
In a single channel analysis, correlations of |r| ≈ 0.25 are
reported. Exploratory studies on the visual discomfort show a
relation to changes in band power [33], [34] and ERP [35],
[36]. However, all of these studies compare to the presentation
of 2D signals. [37] addresses the neural classification of



comfort zones in 3D viewing positions. Using ERPs and
regularized Eigen Fisher spatial filters for feature extraction
and shrinkage LDA for classification, a mean classification
accuracy of 63.3% is reported. The influence of the shutter
frequency of shutter glasses on the neural workload of the
viewer is evaluated in [38]. Shutter frequencies from 39 Hz
to 97 Hz are used to present stereoscopic stimuli. Neural
correlates of the flicker introduced by the opening and closing
of the shutter glasses could be identified up to a frequency of
67.2 Hz, well above the behaviorally estimated flicker fusion
threshold at 47.4 Hz. It is concluded that the risk of reduction
in quality of experience and usability can be reduced by using
higher frequencies for shutter glasses.

IV. DISCUSSION AND CHALLENGES

As the previous section has shown, some research has been
done already on BCI-based assessment of perceived quality
of multimedia signals and systems. However, most of the
work covers more exploratory studies and presents proofs of
concept.

Little is known yet about the properties and limits of the
identified paradigms. This lack of knowledge suggests a lot
of potential regarding the optimization of the experimental
setups. E.g. in [22], it is shown that for the neural assessment
of perceived speech quality the early auditory components
are enough to classify distorted from undistorted audio sig-
nals. This indicates that EEG recordings could be shortened
at least for stronger distortions. Another example addresses
experiments exploiting SSVEP for quality assessment; it can
be shown (e.g. in [39] for perceptual threshold estimation or in
[40] for classification in BCI) that the stimulation frequency in
SSVEP recordings has an influence on the SNR of the recorded
signal and by that on the system performance. The optimal
stimulation frequency for perceived quality assessment is yet
unknown. Fig. 4 shows preliminary results from a study on the
relation between stimulation frequency and SNR of SSVEP for
image quality assessment.

Besides the experimental optimization of identified
paradigms, more challenges lie in the evaluation, develop-
ment and optimization of algorithms for analyzing EEG-data
recorded in quality assessment studies. LDA-based filters [19],
[20] and different variants of CSP [19], [20], [41], [42],
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of the stimulation frequency for one subject in an image quality assessment
study using SSVEP. For the 1st, 2nd and 4th harmonics clear peaks are visible.

[43] are used for feature extraction and shrinkage LDA for
classification [16], [30], [22]. However, it is not clear that these
algorithms are optimal for the domain of quality assessment,
as above the perception threshold, perceived quality can be
assumed to be a quasi-continuous value, as inherently reflected
by MOS values. Interesting approaches for the optimization of
spatial filters are trial-to-trial or subject-to-subject correlation
[44], [45] as well as recently proposed interpretable deep
neural networks [46], and multimodal [47] and multisubject
[48] approaches that combine multiple sources of information
and thus may perform better than classical methods.

While SSVEPs allow for a faster and more reliable record-
ing of stimulus related EEG signals than ERPs [29], a final
conclusion regarding the optimal type of evoked potential
for QA can not be drawn as no comparative evaluation of
different approaches is available. Part of this problem is that
no feasible database of test material for psychophysiological
quality assessment has been adopted yet.

For the evaluation of BCI-based approaches to QA a set of
criteria can be defined in order to allow for the comparison of
these methods:

• How many trials do we need per subject: Condition-wise
variance per subject

• How many subjects do we need: Condition-wise variance
over all subjects

• Which kind of distortions can we differentiate: Granular-
ity regarding neighbored distortion levels

Ultimately, for this, new QA methods have to be compared
to the conventional, psychophysical ones. Thus, whenever a
BCI-based method is evaluated beyond proof of concept, either
classification accuracies or correlations are reported. Usually,
either the distortion in terms of objective signal difference
(such as peak signal-to-noise ratio (PSNR)), distortion param-
eter (such as quantization step size) or the behavioral response
is considered as ground truth. Within the context of assessment
of perceived quality, there is probably not much sense in
taking some notion of distortion parameter into account as
a reference as we want to learn if a specific signal or which
of several signals is perceived distorted. Typically, this is not
strongly correlated with distortion parameters over different
types of contents. However, considering the behavioral re-
sponses, e.g. MOS values, as ground truth should allow us to
compare thresholds and study subconcious processes. Further,
as discussed in Sec. II, behavioral responses are outcome of a
noisy process itself [49]. This also has to be considered in the
evaluation and comparison of BCI-based quality assessment
methods.

In psychophysical experiments, subjects are not only prone
to biases, but some subjects might also be generally unreliable
[11]. Thus, participants in behavioral studies are screened after
the rating experiment in order to identify these unreliable
subjects and remove their data from the analysis [2] (note that
the screening process is no absolute process, but only relative
to the whole set of subjects). For BCI-based approaches, α-
activity is shown to be related to subjects reliability [30],



but more precise predictors have to be developed for quality
assessment as done for BCI [50], [51].

While BCI-based assessment of perceived quality are po-
tentially able to refine psychophysical methods (as in [22]
for audio and [16] for video), offer more insights into dis-
tortion sensitivity close to the perception threshold, and teach
researchers about sensory and cognitive processes underlying
experience of media quality, they also might change the way
of how quality of 3D media is assessed. Visual fatigue, visual
discomfort and nausea are still very ill-defined concepts in
the field of quality assessment [13] and they are usually not
perceivable instantaneously by viewers, but become noticeable
only after some time [13]. This renders the psychophysical
assessment of 3D visual media quality difficult and time
consuming. Here, BCI-based assessment has the potential
to reduce the duration of system evaluation tremendously,
as quality related neural correlates can be recorded before
subjects notice degradations consciously. This would not only
have influence on how perceived quality is assessed for enter-
tainment applications, but also have strong impact on emerging
applications such as telemedicine, as those applications usually
work based on stereoscopic visualization techniques.

This becomes even more manifest when we move from
stereoscopic media to VR, as VR adds the notion of immer-
siveness or presence to the features naturalness (as in 2D
or audio), fatigue, discomfort, and nausea (as in 3D media):
Obviously, every experience of immersiveness would be gone
if subjects were asked about its quality. BCI-based QA can
play its real strength here as it can deliver information about
perceived quality in real-time without affecting the focus of
attention and by that the feeling of immersiveness or presence
of the user.

In this paper we explained why multimedia quality assess-
ment is an important field in modern information technol-
ogy. We gave an overview over conventional approaches and
their drawbacks, showed how these shortcomings motivate
the use of BCI for quality assessment and outlined recent
advances in BCI-based quality assessment. We concluded with
a discussion of current challenges in the field of BCI-based
quality assessment. By this we hope to have demonstrated that
multimedia quality assessment is an interesting and diverse
field of research and application for BCI with a lot of open
challenges ranging from rather fundamental questions regard-
ing the nature of neural correlates of experience, over data
processing techniques and their optimization to the design of
quality assessment paradigms.
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