
ENCODER OPTIMIZATIONS FOR THE NNR STANDARD ON NEURAL NETWORK COMPRESSION

Paul Haase1, Daniel Becking1, Heiner Kirchhoffer1, Karsten Müller1, Heiko Schwarz1,2,
Wojciech Samek1, Detlev Marpe1, Thomas Wiegand1,3

1 Fraunhofer Heinrich-Hertz-Institute, Berlin, Germany

2 Institute of Computer Science, Free University of Berlin, Germany
3 Department of Telecommunication Systems, Technical University of Berlin, Germany

ABSTRACT

The novel Neural Network Compression and Representation
Standard (NNR), recently issued by ISO/IEC MPEG,
achieves very high coding gains, compressing neural
networks to 5% in size without accuracy loss. The underlying
NNR encoder technology includes parameter quantization,
followed by efficient arithmetic coding, namely
DeepCABAC. In addition, NNR also allows very flexible
adaptations, such as signaling specific local scaling values,
setting quantization parameters per tensor rather than per
network and supporting specific parameter fusion operations.

This paper presents our new approach for optimally
deriving these parameters, namely the derivation of
parameters for local scaling adaptation (LSA), inference-
optimized quantization (IOQ), and batch-norm folding (BN).
By allowing inference and fine tuning within the encoding
process, the quantization errors are reduced and the NNR
coding efficiency is further improved to a compressed
bitstream size of only 3% in comparison to the original model
size.

Index Terms— MPEG, NNR, DeepCABAC, neural
network compression, encoder optimization

1. INTRODUCTION

Neural Networks (NNs) have demonstrated remarkable
breakthrough’s in a wide range of machine learning tasks [1],
such as image classification, speech recognition, object
detection, natural language understanding, etc. For this,
current NNs are equipped with several millions of neuron
connections [2], sometimes even in the order of billions,
making them very resource-intensive. Furthermore, NN
applications become distributed across many devices, e.g., in
federated learning and training [3][4], imposing very large
network traffic, when the NN weights and bias data
(representing the NN neuron connections) are transmitted
across devices.

To address the demand for efficient NN compression and
transmission, the ISO/IEC Moving Picture Experts Group
(MPEG) has issued the first international standard for
compression and representation of neural networks (NNR)
[5]. With efficient tools for preprocessing, quantization and
entropy coding, NNR achieves already very high
compression rates for neural network models without

degrading performance measures. However, the choice of
actual tool parameters is usually not within the scope of the
standard, but rather up to specific encoder implementations.
Accordingly, this paper presents three specific encoder tools,
namely local scaling adaptation, batch-norm folding, and
inference-optimized quantization together with specific
methods to optimize their parameters in order to increase the
compression efficiency. These methods are implemented and
evaluated using the NNR reference software.

2. NNR CODING STRUCTURE

Fig. 1: Coding Structure of the NNR Standard (from an encoder
perspective).

A typical encoder compliant to the NNR standard [5] includes
three stages for neural network compression: Preprocessing
and parameter reduction, quantization, and entropy coding.
These are depicted for the NNR encoder in Fig. 1. The first
tool set contains optional preprocessing and parameter
reduction tools. Instead of coding and compressing the
original model, different methods allow to modify the model
in a way that is beneficial for the succeeding coding and
compression steps. In NNR, there are several parameter
reduction tools, i.e., sparsification, unification, pruning, and
low-rank decomposition [5]. Sparsification and unification
aim at setting as many values as possible to zero or at
reducing the number of unique values within a tensor,
respectively. The methods for low-rank decomposition and

pruning transform tensors or remove values, resulting in
tensors of reduced size. In fact, these methods change the
model’s values or its architecture which may affect the
inference or classification performance. Further
preprocessing tools, namely batch-norm folding and local
scaling adaption, remove redundancies in NN tensors and use
scaling factors respectively in order to partly compensate
quantization errors introduced by the quantization stage.

Generally, the values are quantized to integers in order
to further compress the tensor and to output integer indices
that can be handled by the succeeding entropy coding stage.
For this, NNR specifies quantization tools which include the
use of integer codebooks, uniform scalar quantization, and a
form of vector quantization called dependent scalar
quantization [6], also known as trellis-coded quantization [7].
For all tools a quantization step size is derived from an
(integer) quantization parameter (QP) that provides a
mechanism for controlling the rate-performance trade-off. In
general, coarser quantization reduces the bitrate, however at
the cost of a loss in inference performance. Therefore, a
careful selection of QP values is necessary for a good neural
network compression.

The integer indices output by the quantization stage are
then encoded using a binary arithmetic coding scheme, called
DeepCABAC [8]. This tool is based on the context-based
adaptive binary arithmetic coding (CABAC) [9], which is
part of several video coding standards [10]-[12]. Generally,
arithmetic coders achieve compression close to the entropy of
the source signal, if the statistics are known. DeepCABAC
employs a set of probability estimators, called context
models, which try to adapt to the source statistics [13]. This
enables high compression for a large variety of different
models without any prior knowledge of the statistics.

The respective NNR decoder, which is actually specified
in the corresponding NNR standard [5], operates in reverse
order, i.e., arithmetically decodes a received NNR bitstream,
using DeepCABAC, applies tensor value reconstruction, and
finally inverts preprocessing methods, if necessary.

3. NNR ENCODER OPTIMIZATION

The NNR standard enables the use of several tools in order to
achieve a good rate-performance trade-off. Usually, this
trade-off highly depends on the decisions in the encoder. In
NNR, as well as for other media coding standards, the
specific decision process is not in the scope of the standard,
which gives a high degree of freedom to encoder
development and tuning. In the following, three tools are
presented that allow the encoder to significantly improve the
rate-performance trade-off and that are presented together
with methods to find optimized parameters and further
improve coding efficiency.

3.1. Local scaling derivation

Local scaling adaptation (LSA) enables the encoder to
partially compensate errors introduced by quantizing neural

network weight tensors. Usually, the sensitivity of different
neurons of deep neural networks to quantization with respect
to the inference performance varies. Considering this, local
scaling adaptation multiplies an additional scaling factor to
each row vector of the weight tensor W, which is shaped as a
2-D matrix such that a row corresponds to an output neuron,
as shown in eq. (1). More specifically, the scaling factors are
given by a vector s and the weight tensor is represented by a
2-D matrix, such that each row contains the weights of the
same neuron.

 𝐖" ≔ 	𝐬 ∘ 𝐖 = (
𝑠!
𝑠"
𝑠#
* ∘ (

𝑤!,! 𝑤!," 𝑤!,#
𝑤",! 𝑤"," 𝑤",#
𝑤#,! 𝑤#," 𝑤#,#

* (1)

Here, the operator ∘ denotes element-wise scaling of
each row vector of a matrix with the corresponding element
of a transposed vector.
The NNR standard only specifies the compression of local
scales in s, while the optimal derivation and thus the specific
values of these parameters is not part of the standard and up
to the specific encoder implementation. Accordingly, we
introduce a method for deriving s for improving the rate-
performance trade-off. If an encoder has the ability to fine-
tune the model, this can be done by fine-tuning the local
scaling parameters after quantization of the weight tensors.
For this, the scaling factors can be initialized with a value of
1 and then adapted, by using backpropagation, such that the
inference performance of the model is increased. The
resulting scaling factors are then quantized and encoded so
that they can be derived at the decoder.

3.2. Batch-norm folding

Batch-normalization is a concept often used in deep neural
networks in order to normalize the inputs so that they have
zero mean and unit variance [14]. For this, the models employ
so-called batch-norm layers with several parameters. Batch-
norm folding (BN) aims at reducing redundancy of the
parameters by exploiting interdependencies which are known
by encoder and decoder. It assumes that the combination of a
convolutional or a fully-connected layer with a batch-norm
layer of the following form can be expressed as

 𝐁𝐍(𝐗) = 𝐖∗𝐗(𝐛*𝛍
,𝛔𝟐(.

∘ 𝛄 + 𝛃, (2)

where 𝐁𝐍(𝐗) is the output, 𝐗 is the input, 𝐖 is the weight
tensor, 𝐛 is a bias parameter, and the remaining parameters
are batch-normalization parameters (see [14]). Note that 𝐛, 𝛍,
𝛔𝟐, 𝛄, and 𝛃 have the same shape as 𝐗 which is shaped as a
transposed vector. Similar to the approach in sec. 3.1, 𝐖 is
represented as 2D matrix, such that each row corresponds to
an output neuron. Parameter 𝜖 is a scalar close to zero.
Usually, each parameter is encoded individually. Without
changing any of the parameters the bitrate can be reduced by
combining several parameters. For this, the following
transformation is applied prior to encoding:

 𝐁𝐍(𝐗) = 𝛂 ∘𝐖 ∗ 𝐗 + 𝛅 (3)

with 𝛂 = 𝛄
,𝛔𝟐(.

 and 𝛅 = (𝐛*𝛍)∘𝛄
,𝛔𝟐(.

+ 𝛃.

Consequently, it is now sufficient to encode the
parameters 𝐖, 𝛂, and 𝛅 in order to obtain the same output.
Furthermore, whenever batch-norm folding and local scaling
adaptation (as described in sec. 3.1) are combined, the scaling
parameter vector 𝐬 can be merged with parameter 𝛂 to obtain
a single vector 𝛂; ≔ 	𝛂 ∘ 𝐬. In this case, the scaling factors
practically do not affect the bitrate (except for a few bits
induced by the changes of the values).

3.3. Inference-optimized quantization

In the NNR standard the quantization step size is controlled
by a quantization parameter (QP) which is signaled in the
bitstream. Furthermore, NNR allows to apply specific QP
values to each tensor. In NNR, a QP value of 0 corresponds
to a step size of 1 and increasing or decreasing the QP value
by four corresponds to doubling or halving the step size,
respectively. E.g., a QP value of -4 yields a step size of 0.5.

Selection of the QP values at the encoder is again outside
the scope of the standard, however, is a key parameter for
controlling the rate-performance trade-off. Proper selection
of the quantization parameter is a challenging task due to the
complex dependencies between the tensors. In this specific
trade-off, a coarser quantization decreases the bitrate in
general, however coarse quantization of individual NN
tensors can cause a significant decrease in the overall
inference performance of the entire network. Thus, tensors
can have very different sensitivities towards quantization, but
deriving the impact of the quantization error of a single tensor
on the performance seems not to be feasible without
evaluation of the whole model. For targeting the quantization
optimization, we started with the following two (empirical)
observations: First, quantizing large weight tensors highly
affects both the bitrate and performance, whereas quantizing
small tensors may significantly affect the performance, while
only minimally influencing the bitrate. And second, tensors
with a high standard deviation stronger degrade the network
performance, when coarser quantized.

Starting from this, we introduce inference-optimized
quantization (IOQ) as a method to select optimized QP values
considering the model’s performance on a parameter tuning
set (which is different from the verification dataset), as well
as its bitrate. For this, an algorithm is applied that iteratively
quantizes a tensor and also encodes and evaluates the model.

In a first step a QP value, denoted as 𝑏𝑎𝑠𝑒𝑄𝑃, is selected
and the QP values (𝑄𝑃4) for each weight tensor 𝐖4 are
assigned based on the tensor’s statistics according to:

 𝑄𝑃4 = A𝑟𝑛𝑑E𝑏𝑎𝑠𝑒𝑄𝑃 ∙ (1 − 𝜂4)J,	if	𝜂4 ≤ 0.5
𝑟𝑛𝑑(𝑏𝑎𝑠𝑒𝑄𝑃 ∙ 0.85),								if	𝜂4 > 0.5

 (4)

where 𝜂4 = 𝜀4 + 𝜗4 and:

 𝜀4 =
#𝐖4

	∑ (#𝐖4)4
 (5)

 𝜗4 =	X1 −
𝑠𝑡𝑑(𝐖4)

𝑚𝑎𝑥∀4E𝑠𝑡𝑑(𝐖𝐢)J
\ (6)

The operators #, 𝑟𝑛𝑑(∙) and 𝑠𝑡𝑑(∙), denote number of
elements, rounding to the next integer and standard deviation,
respectively. With this approach, the above two observations
are exploited, such that a finer quantization is applied for
tensors which have a small size and high standard deviation,
i.e., where both 𝜀4 and 𝜗4 are small. This first step already
provides a better coding gain compared to simply assigning
the same QP value to all network tensors.

In the next step, a local QP optimization is applied as
follows: First, all tensors are sorted by the number of
elements in a descending order which is also the processing
order for quantization of the tensors. Thus, the weight tensors
which have the largest impact on the bitrate, are quantized
first. This enables good control of the accuracy measure while
quantizing them as coarse as possible in order to achieve low
bitrates. Then, starting with the second tensor in the list, for
each tensor QP offsets in the range from -4 to 4 are tested.
Note that, the first tensor 𝐖7 always applies the value 𝑄𝑃7
computed in the previous step. This avoids obtaining
identical working points for different 𝑏𝑎𝑠𝑒𝑄𝑃𝑠.

For a current tensor 𝐖4 to be processed, the QP offset is
added to the QP value (𝑄𝑃4) and the whole model is
quantized, encoded and evaluated by inference on the
parameter tuning set. The QP values of the other tensors
remain unchanged. Then, a QP offset DQP that minimizes a
Lagrangian cost function 𝐷 + 𝜆𝑅 is added to the QP value
and this new value is assigned to the current tensor. Here, 𝐷
is the change of performance measure (negative for an
increase), 𝑅 is the change of bitrate and 𝜆 is the Lagrange
multiplier which depends on the QP value and can be derived
from the rate-performance curve.

The procedure is repeated for each tensor in the sorted
list. In that way, the method yields optimized QP values
which significantly improve the rate-performance trade-off.

4. EXPERIMENTAL RESULTS

The compression performance for the tools presented in this
paper is evaluated using the standard reference software
NCTM (Neural network Compression Test Model version
6.0, [15]) on a verification dataset of different neural
networks defined in [16][17]. An overview of the models can
be found in [17] as well as corresponding use cases,
performance measures, application data, and number of
parameters. The dataset includes five models, three for image
classification (VGG16, ResNet50, MobileNetV2), one for
audio classification (DCase), and an image autoencoder
(UC12B). The classification performance of the image- and
audio classification models is measured as Top-1/ Top-5
accuracies, while for UC12B Peak Signal-to-Noise Ratio
(PSNR) / Structural Similarity Index Measure (SSIM) is
applied.

The baseline (BL) software configuration [16] uses
dependent scalar quantization with a constant QP value for
all weight tensors (and a smaller QP value for all non-weight
tensors) and entropy coding with DeepCABAC. On top,

individual coding performance of LSA, BN, and IOQ as well
as the combined performance are evaluated. Coding results
for the baseline configuration as well as the overall
combination of LSA+BN+IOQ at working points with same
classification quality are given in TABLE 1. Note that batch-
norm folding has no effect on VGG16 and UC12B, since
these models do not contain batch-norm layers.

TABLE 1 shows that an overall compression ratio cr of
less than 3% can be achieved without loss of classification
performance for VGG16, reducing its original size of 550MB
down to a compressed bitstream of 16MB. When comparing
the compression ratios between the proposed method “All”
and the baseline “BL”, an overall compression gain between
13% for DCase and 46% for VGG16 can be achieved at
nearly identical accuracies. Comparable compression
methods, such as those mentioned in [8], are clearly
outperformed.

TABLE 1
NNR TRANSPARENT CODING RESULTS

Model Method cr in %
Top-1 / Top-5
Acc. reconstr.

Top-1 / Top-5
Acc. original

VGG16 BL 5.50 70.55 / 89.61 70.93 / 89.85 All 2.98 70.51 / 89.54
 Result -46% -0.06 / -0.08 %

ResNet50 BL 9.68 74.45 / 91.93 74.98 / 92.15 All 6.54 74.42 / 91.80
 Result -32% -0.04 / -0.14 %

MobileNetV2
BL 19.18 71.15 / 90.06 71.47 / 90.27 All 12.18 71.13 / 90.06

 Result -36% -0.03 / 0.00 %

DCase
BL 4.71 59.26 / 91.36 58.27 / 91.85 ALL 4.12 58.15 / 92.35

 Result -13% -1.87 / 1.08 %

Model Method cr in % PSNR / SSIM
reconstructed

PSNR / SSIM
original

UC12B BL 22.23 29.98 / 0.955 30.13 / 0.956 All 17.34 29.98 / 0.954
 Result -22% 0.00 / -0.10 %

Additional results for the presented methods from sec. 3,
i.e. local scaling adaptation (LSA), batch-norm folding (BN),
inference-optimized quantization (IOQ), all methods
combined (LSA+BN+IOQ) and the baseline configuration as
reference, are depicted in Fig. 2 (a) to (e), respectively. Each
figure shows compression ratios cr with respect to the
performance measure (Top-1 accuracies for all classification
models and PSNR for the image autoencoder). The results
show that the presented methods achieve high compression
even for near lossless performance measures and even higher
compression by combining the methods, while significantly
outperforming the baseline configuration.

5. CONCLUSIONS

In this paper, we presented specific NNR encoder
optimization methods that all together achieved an increase
in overall compression performance by up to 46%. In
particular we applied the optimal derivation of local scaling
parameters, a batch-norm folding, and a specific inference-

optimized QP derivation. For assessing the impact on each
presented method, we showed individual coding results for
each tool as well as overall coding results, when combining
all encoder optimization tools.

Fig. 2: Compression Ratio-Performance curves for (a) VGG16, (b)
ResNet50, (c) MobileNetV2, (d) DCase showing Top-1 Accuracies
and for (e) UC12B showing PSNR.

50

55

60

65

70

75

0 0.01 0.02 0.03 0.04 0.05
Compression Ratio

Pretrained VGG16

Baseline
LSA
IOQ
LSA+IOQ

Top-1 Accuracy in %

50

55

60

65

70

75

80

0 0.02 0.04 0.06 0.08 0.1
Compression Ratio

Pretrained ResNet50

Baseline
LSA
BN
IOQ
LSA+BN+IOQ

Top-1 Accuracy in %

50

55

60

65

70

75

0 0.05 0.1 0.15 0.2
Compression Ratio

Pretrained MobileNetV2

Baseline
LSA
BN
IOQ
LSA+BN+IOQ

Top-1 Accuracy in %

40

45

50

55

60

65

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Compression Ratio

Pretrained DCase

Baseline
LSA
BN
IOQ
LSA+BN+IOQ

Top-1 Accuracy in %

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25
Compression Ratio

Pretrained UC12B

Baseline
LSA
IOQ
LSA+IOQ

PSNR in dB

(b)

(c)

(d)

(e)

(a)

6. REFERENCES

[1] K. Ota, M. S. Dao, V. Mezaris, and F. G. B. D. Natale, “Deep

learning for mobile multimedia: A survey”, ACM
Transactions on Multimedia Computing, Communications,
and Applications, vol. 13, no. 3s, pp.34:1–34:22, 2017.

[2] Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael
Niemier, Jason Cong, Yu Hu, and Yiyu Shi, “Scaling for edge
inference of deep neural networks,” Nature Elec- tronics, vol.
1, no. 4, pp. 216–222, 2018.

[3] F. Sattler, S. Wiedemann, K.-R. Müller, W. Samek “Robust
and Communication-Efficient Federated Learning from Non-
IID Data”, IEEE Transactions on Neural Networks and
Learning Systems, vol. 31, no. 9, pp. 3400-3413, September
2020, doi: 10.1109/TNNLS.2019.2944481.

[4] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B.
A. y Arcas, “Communication-efficient learning of deep
networks from decentralized data,” 2016, arXiv:1602.05629.
[Online]. Available: http://arxiv.org/abs/1602.05629.

[5] „Text of ISO/IEC DIS 15938-17 Compression of Neural
Networks for Multimedia Content Description and Analysis“,
MPEG document N00016, ISO/IEC JTC1/ SC29/ WG 04,
Oct. 2020

[6] P. Haase et al., "Dependent Scalar Quantization For Neural
Network Compression," 2020 IEEE International Conference
on Image Processing (ICIP), Abu Dhabi, United Arab
Emirates, 2020, pp. 36-40, doi:
10.1109/ICIP40778.2020.9190955.

[7] M. W. Marcellin and T. R. Fischer, "Trellis coded
quantization of memoryless and Gauss-Markov sources," in
IEEE Transactions on Communications, vol. 38, no. 1, pp. 82-
93, Jan. 1990, doi: 10.1109/26.46532.

[8] S. Wiedemann et al., "DeepCABAC: A Universal
Compression Algorithm for Deep Neural Networks," in IEEE
Journal of Selected Topics in Signal Processing, vol. 14, no.

4, pp. 700-714, May 2020, doi:
10.1109/JSTSP.2020.2969554.

[9] D. Marpe, H. Schwarz and T. Wiegand, "Context-based
adaptive binary arithmetic coding in the H.264/AVC video
compression standard," in IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 620-636,
July 2003, doi: 10.1109/TCSVT.2003.815173.

[10] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra,
"Overview of the H.264/AVC video coding standard," in
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 560-576, July 2003, doi:
10.1109/TCSVT.2003.815165.

[11] ITU-T and ISO/IEC, “High efficiency video coding,” ITU-T
Rec. H.265 and ISO/IEC 23008-10, vers. 1, 2013.

[12] B. Bross, J. Chen, S. Liu, and Y.-K. Wang, “Versatile video
coding (draft 8),” Joint Video Experts Team (JVET), doc.
JVET-Q2001, Brussels, Jan. 2020.

[13] P. Haase et al., "State-Based Multi-parameter Probability
Estimation for Context-Based Adaptive Binary Arithmetic
Coding," 2020 Data Compression Conference (DCC),
Snowbird, UT, USA, 2020, pp. 163-172, doi:
10.1109/DCC47342.2020.00024.

[14] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into
Deep Learning,” Release 0.16.0, Jan. 2021, pp. 277-285,
https://d2l.ai/d2l-en.pdf

[15] “Test Model 6 of Compression of Neural Networks for
Multimedia Content Description and Analysis”, MPEG
document N00017, ISO/IEC JTC 1/SC 29/ WG 04, Oct. 2020

[16] “Description of Core Experiments on Compression of neural
networks for multimedia content description and analysis”,
MPEG document N18574, ISO/IEC JTC 1/SC 29/WG 11, Jul.
2019.

[17] “Evaluation Framework for Compressed Representation of
Neural Networks”, MPEG document N17929, ISO/IEC JTC
1/SC 29/WG 11, Oct. 2018

