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Abstract. This work investigates the detection of instabilities that may
occur when utilizing deep learning models for image reconstruction tasks.
Although neural networks often empirically outperform traditional recon-
struction methods, their usage for sensitive medical applications remains
controversial. Indeed, in a recent series of works, it has been demonstrated
that deep learning approaches are susceptible to various types of insta-
bilities, caused for instance by adversarial noise or out-of-distribution
features. It is argued that this phenomenon can be observed regardless
of the underlying architecture and that there is no easy remedy. Based
on this insight, the present work demonstrates on two use cases how
uncertainty quantification methods can be employed as instability detec-
tors. In particular, it is shown that the recently proposed Interval Neural
Networks are highly effective in revealing instabilities of reconstructions.
Such an ability is crucial to ensure a safe use of deep learning-based
methods for medical image reconstruction.

Keywords: Inverse Problems · Deep Learning · Adversarial Attacks.

1 Introduction

Deep learning has shown the potential to outperform traditional schemes for solv-
ing various signal recovery problems in medical imaging applications [19,18,14,1].
Typically, such tasks are modelled as finite-dimensional linear inverse problems,

y = Ax+ η, (1)

where x ∈ Rn is the unknown signal of interest, A ∈ Rm×n denotes the forward
operator representing a physical measurement process, and η ∈ Rm is modelling
noise in the measurements. Important examples include choosingA as the identity
(denoising), a subsampled Fourier matrix (magnetic resonance imaging), or a
discrete Radon transform (computed tomography). Solving the inverse problem
(1) amounts to computing an approximate reconstruction of x from its observed
measurements y. The difficulty of this task is mainly determined by the strength
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of the noise and the degree of ill-posedness of (1), which is typically governed by
the amount of undersampling in the measurement domain; cf. [15,9].

In many cases, sparse regularization provides state-of-the-art solvers for (1),
which are additionally backed up by theoretical guarantees, e.g. by compressed
sensing [9]. Recently, it has been demonstrated that data-based deep learning
methods are able to outperform their traditional counterparts in terms of empirical
reconstruction quality and speed, however, the field is still in an early stage.
Focusing primarily on recovery performance, aspects such as the reliability of
reconstructions have not yet been extensively explored; see [2,4] for exceptions.

In image classification, the susceptibility of deep neural networks to adver-
sarial exploitation is well documented [34,25,8]. Recent works have reported
similar instabilities for image reconstruction tasks [17,3,12], which can be caused
by visually imperceptible adversarial noise or features that have not been seen
during training. Although there have been first attempts to alleviate these short-
comings [30,6], [12] argues that such instabilities are in fact an unavoidable price
for improvements in performance over classical methods. Hence, this work is
motivated by the following premise: if instabilities occur, we want to be able to
detect them. To that end, we demonstrate the potential of uncertainty quantifica-
tion (UQ) as an instability detector. Out of the three compared UQ methods,
the recently proposed Interval Neural Network framework of [28] is shown to be
particularly well suited for this task.

Overview and Contributions We consider a straight-forward approach to
solving (1), which is based on post-processing a standard model-based inversion
by a neural network [37,19,18]. Thus, the reconstruction is given by

xrec = Φ(A†y), (2)

where Φ : Rn → Rn denotes the prediction network (trained to minimize the
loss ‖x−Φ(A†y)‖22) and A† symbolizes the non-learned model-based inversion.3

Based on this reconstruction method, we then focus on two use cases. First,
the standard imaging task of removing white Gaussian noise (i.e., A is the
identity), which can be seen as a well-conditioned inverse problem, is examined.4

Second, we consider the severely ill-posed problem of limited angle computed
tomography (A is a subsampled Radon transform), which has applications in
dental tomography, breast tomosynthesis or electron tomography. While Φ is only
used for a plain removal of Gaussian noise in the first case, the latter application
requires a removal of structured artifacts as well as an “inpainting” of missing

3 There is a variety of other possibilities to utilize neural networks to solve (1); see [5]
for a comprehensive overview. However, [3] suggests, that the issue of instabilities
occurs independently of the considered reconstruction scheme. Thus, we restrict our
study to the simple ”image-to-image” post-processing setting described above.

4 Note that there is an intimate connection between denoising and solving general
ill-posed inverse problems, that can for instance be exploited by “plug-and-play”
schemes [36]; see also [29]. Thus, this application is chosen as a prototypical example
for image-to-image regression by neural networks with a broad scope of implications.
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edge information. On each of the two use cases, we investigate the capacity of
three UQ schemes (see Section 2) to localize possible instabilities in the output
of the prediction network Φ. As possible causes for such instabilities we consider:
(i) adversarial noise on the input and (ii) imposed structural characteristics that
have not been seen during training, i.e., out-of-distribution (OoD) features (see
Section 3). We believe that detecting OoD-instabilities is of particular importance
in the context of medical imaging, since pathological changes are typically rare
events in the training data.

In summary, the contributions of this work are as follows:

a) We show that UQ can be utilized to detect the lack of robustness of deep
learning-based image reconstruction methods.

b) Three UQ schemes for artificial neural networks are compared with respect to
their capacity of revealing reconstruction instabilities described by [12,3,17].

c) We demonstrate that one UQ approach in particular, the so called Interval
Neural Network, performs best as an instability detector.

Related Work In addition to the work cited above there exist strands of
research in deep learning occupied with the detection of adversarial and OoD
inputs. Maximum Mean Discrepancy, Kernel Density Estimation and other tools,
see [8] for an overview, have been successfully employed for adversarial input
detection. Popular methods for OoD input detection include Minimum Covariance
Determinant [32], Support Vector Data Description [35], as well as methods geared
particularly towards the deep model setting such as ODIN [22], Outlier Exposure
[16], or detection in latent space [13].

The detection of adversarial and OoD inputs in these works is typically done
in the classification setting. We emphasize that image-to-image regression by Φ
is a fundamentally different task: While classification is inherently discontinuous,
Φ addresses a problem that allows for stable reconstruction methods in many
cases, e.g. by sparse regularization. Furthermore, we are not interested in a crude,
outright rejection of data points in the input space but rather seek to obtain
fine-grained information about erroneous artifacts in the output space. More
closely related to our goal is the work of [20,11] where uncertainty quantification
was considered for segmentation and depth-estimation tasks. Hence, we include
their approaches as detection methods which are described next.

2 Detection Methods

We consider three methods for uncertainty quantification of neural network
predictions and compare their capacity to detect reconstruction instabilities
caused by adversarial noise and OoD features.

Interval Neural Network By using interval arithmetic a baseline network
Φ : Rn → Rn can be extended to an Interval Neural Network (INN)

ΦINN : Rn → Rn × Rn × Rn, x̃ 7→
(
Φ(x̃),Φ(x̃),Φ(x̃)

)
(3)
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where Φ and Φ are mappings to lower and upper interval bounds for the
prediction of the INN, cf. supplementary material. Given labeled samples
(x̃i,xi) = (A†yi,xi) it is suggested in [28] to train the INN by minimizing
the empirical loss∑

i ‖max{xi −Φ(x̃i), 0}‖22 + ‖max{Φ(x̃i)− xi, 0}‖22 + β‖Φ(x̃i)−Φ(x̃i)‖1,

subject to constraints that guarantee Φ(x̃) ≤ Φ(x̃) ≤ Φ(x̃) for all x̃. Hence, the
idea of INNs is to produce output intervals that contain the true labels with
high probability, while remaining as tight as possible. The pixel-wise uncertainty
estimate of an INN is then given by the width of the prediction interval, i.e.,
uINN(x̃) = Φ(x̃)−Φ(x̃). We refer to [28] for further details on INNs and their
evaluation in the context of uncertainty quantification.

Monte Carlo Dropout In MCDrop proposed by [10,20], uncertainty scores
are obtained through the sample variance of multiple stochastic forward passes
on the same input data point. In other words, if Φ1, . . . ,ΦT are realizations of
independent draws of random dropout masks for the same prediction network Φ,
then the pixel-wise uncertainty estimate is given by

uMCDrop(x̃) = 1
T−1

(∑T
t=1Φt(x̃)2 − 1

T

(∑T
t=1Φt(x̃)

)2
)
.

Mean & Variance Estimation The work by [27] proposed another simple
recipe for uncertainty scores: the number of output components of the prediction
network is doubled and trained to approximate the mean and variance of a Gaus-
sian distribution. This approach has been recast by [11] as so-called lightweight
probabilistic networks (ProbOut)

ΦProbOut : Rn → Rn × Rn, x̃ 7→ (Φmean(x̃),Φvar(x̃))

which are trained by minimizing the empirical loss

∑
i

∥∥∥∥xi−Φmean(x̃i)√
Φvar(x̃i)

∥∥∥∥2

2

+ ‖ logΦvar(x̃i)‖1.

The pixel-wise uncertainty score of ProbOut is then simply given by the variance
estimate, i.e., uProbOut(x̃) = Φvar(x̃).

3 Experiments and Results

In this section, we first briefly report on the general deep learning setup of the
experiments. Detailed technicalities are listed in the supplement for the sake of
reproducability. Finally, we describe the actual experiments for the detection of
instabilities and their results.
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3.1 Inverse Problems, Neural Networks and Data

Image Denoising This task consists of removing additive Gaussian noise with
standard deviation 25/255 from greyscale images (rescaled to the intensity range
[0, 1]) from the Berkeley Segmentation Dataset [23]. The prediction network
underlying all uncertainty methods is a fully-convolutional residual network with
17 convolution layers, inspired by [38].

INN MCDrop ProbOut
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Fig. 1. Results of three UQ methods for the AdvDetect and ArtDetect experiments for
one exemplary data sample of the Image Denoising task.
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Limited Angle Computed Tomography (CT) For this task, we consider a
simulation of the noiseless Radon transform with a moderate missing wedge of
30◦ for the forward model (1). The non-learned inversion A† in (2) is based on the
filtered backprojection algorithm (FBP) [26]. The underlying prediction network
is a U-Net [31] variant. Our experiments are based on a data set consisting of
512× 512 human CT scans from the AAPM Low Dose CT Grand Challenge data
[24].5 In total, it contains 2580 images of 10 patients. Eight of these ten patients
were used for training (2036 samples), one for validation (214 samples) and one
for testing (330 samples).

3.2 Instability Detection

Two experiments are performed on the two tasks described above. The first one,
Adversarial Artifact Detection, examines the capacity of uncertainty quantifi-
cation methods to detect adversarial inputs. The second experiment, Atypical
Artifact Detection, exposes the prediction network to a novel structure that was
not present during training, analogous to the out-of-distribution test in [3,12].
Both experiments are explained in detail below.

Adversarial Artifact Detection (AdvDetect) The AdvDetect experiment
assesses the capacity of the considered UQ methods to capture artifacts in the
output that were caused by adversarial noise. To that end, we create perturbed
inputs for each measurement sample y in the test set by employing the box-
constrained L-BFGS algorithm [7] to solve

minimizex̃adv∈[0,1]n ‖Φ(x̃adv)− xadv. tar.‖22 + λ‖x̃adv − x̃‖22, (4)

where x̃ = A†y denotes the model based inversion, xadv. tar. represents a cor-
responding adversarial target, and λ ≥ 0 is a parameter for balancing the two
terms in (4). It is arguable, whether the technical aspects of such an adversarial
pertubation (i.e., attacking subsequently to a model-based inversion) is a realistic
scenario in the context of inverse problems. However, for our purposes, such a
simple setup (see also [17]) is sufficient. We refer to [3,12], where adversarial
noise is mapped to the measurement domain. For the Image Denoising data we
use λ = 0.5, and the adversarial targets are created by adding noise to a random
50 × 50 patch in the reconstruction xrec = Φ(x̃) obtained via (2). Thus, the
denoising network is forced to fail its task in that region; see Figure 1. For the
Limited Angle CT task we found that the second term in (4) is not required,
i.e., we use λ = 0. Adversarial targets are created by subtracting 1.5 times its
mean value from xrec within a random 50× 50 square, leading to clearly visible
artifacts in the corresponding reconstructions; see Figure 2. In order to assess the

5 See: https://www.aapm.org/GrandChallenge/LowDoseCT/; We would like to thank
Dr. Cynthia McCollough, the Mayo Clinic, and the American Association of Physicists
in Medicine as well as the grants EB017095 and EB017185 from the National Institute
of Biomedical Imaging and Bioengineering for providing the AAPM data.

https://www.aapm.org/GrandChallenge/LowDoseCT/
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adversarial artifact detection capacity, the different UQ schemes are then used to
produce uncertainty heatmaps for the generated adversarial inputs. A quantitative
evaluation is carried out by computing the mean Pearson correlation coefficient
between the pixel-wise change in the uncertainty heatmaps |u(x̃) − u(x̃adv)|
and the change of reconstructions |xrec −Φ(x̃adv)|. The results are summarized
in Table 1 and illustrated in Figures 1 and 2. We observe that both INN and
ProbOut are able to detect the image region of adversarial perturbations, with
ProbOut achieving slightly higher correlations in the denoising task and INN
having the highest correlation in the CT task. This shows that both methods are
able to visually highlight the effect that almost imperceptible input perturbations
have on the reconstructions.

Atypical Artifact Detection (ArtDetect) The ArtDetect experiment is
designed analogous to the setup described by [12], i.e., an atypical artifact, which
was not present in the training data, is randomly placed in the input. For the
Image Denoising task this is achieved by locally changing the noise distribution,
i.e., we replace the Gaussian noise by Salt & Pepper noise in one half of each
image in the test set; see Figure 1. For the Limited Angle CT task the silhouette
of a peace dove is inserted in each image of the test set; see Figure 2. The
simulation of the measurements and model-based inversions is carried out on the
new test set as before. In order to assess the atypical artifact detection capacity,
the different UQ schemes are then used to produce uncertainty heatmaps on
the resulting OoD inputs. A quantitative evaluation is carried out by computing
the mean Pearson correlation coefficient between the change in the uncertainty
heatmaps |u(x̃)− u(x̃OoD)| and a binary mask marking the region of change in
the inputs. The results are summarized in Table 1 and illustrated in Figures 1
and 2. All three UQ methods are correlated with the input change, however INN
achieves the highest correlation in both the Image Denoising and CT task. This
shows that UQ in general, and INNs in particular, can serve as a warning system
for inputs containing atypical features that might otherwise lead to unnoticed
and possibly erroneous reconstruction artifacts.

4 Conclusion

We demonstrated qualitatively and quantitatively on two use-cases, image denois-
ing and limited angle computed tomography, that uncertainty quantification, in
particular INN and ProbOut, bears great potential as a fine-grained instability
detector. Furthermore, Interval Neural Networks performed best overall in three
out of four experiments. The implication and goal of this work is to ultimately
move deep learning technology closer to a level of reliability that makes it a
serious contender for integration in medical imaging workflows. If we want to
harness the prowess of deep learning we will need to find strategies for accounting
for its instabilities. Uncertainty quantification can be an important tool to that
end.
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Table 1. Mean Pearson correlation coefficients, averaged (± standard deviation) over
three experimental runs, for the Adversarial Artifact Detection and Atypical Artifact
Detection experiments.

Image Denoising CT
UQ Method AdvDetect ArtDetect AdvDetect ArtDetect

INN 0.77± 0.008 0.69± 0.006 0.56± 0.05 0.52± 0.03
MCDrop 0.20± 0.001 0.44± 0.02 0.28± 0.02 0.26± 0.01
ProbOut 0.81± 0.002 0.44± 0.01 0.48± 0.12 0.34± 0.04

INN MCDrop ProbOut
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Fig. 2. Results of three UQ methods for the AdvDetect and ArtDetect experiments for
one exemplary data sample of the Computed Tomography Reconstruction task. The
plotting windows are slightly adjusted for better contrast.
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A Supplementary Material

A.1 Details of Experimental Setup

Table 2. Summary of the technical details regarding the neural network architecures,
training, and data sets for the two use cases of Image Denoising and Computed
Tomography Reconstruction. Image Denoising data is available at https://github.

com/husqin/DnCNN-keras(not affiliated with authors of this paper).

Image Denoising Limited Angle CT

B
a
se

N
e
tw

o
rk

based on [38] U-Net of [31]
dropout (0.05) after every other conv. dropout (0.7) after down-/up-sampling
trained with Adam[21], 50 epochs trained with Adam, 400 epochs
learning rate: 10−4 learning rate: 7.5 · 10−5

mini-batch size: 128 mini-batch size: 12
no batch normalization as in [38]
128 instead of 64 conv. channels, cf. [38]

IN
N

10 epochs with Adam 15 epochs with Adam
learning rate: 10−6 learning rate: 10−6

β = 10−3 β = 10−4

mini batch size: 96 mini batch size: 6
interval arithmetic in last 8 layers interval arithmetic in last 12 layers

M
C
D
ro

p

T = 128 forward passes T = 16 forward passes

P
ro

b
O
u
t additional output channel additional output channel

otherwise same setup as base network 400 more epochs with Adam
learning rate: 10−7

mini-batch size: 12

D
a
ta

Berkeley Segmentation Dataset [23] AAPM Low Dose CT Grand Challenge
400 128× 128-images; see [33,38] 10 patients: 2580 512× 512-images
overlapping 40× 40-patches, stride 10 (8/1/1 for training/validation/testing)
rescaled to intesity range [0, 1] noiseless Radon transform
Gaussian noise, standard dev. 25/255 30◦ missing wedge
testing: 68 images of varying size; cf. [38] Ramp-filter for FBP

A.2 Interval Arithmetic in Neural Networks

We give a derivation of the lower and upper interval bounds Φ and Φ in equation
(3) of the main paper. Interval Neural Networks (INNs) make use of interval
arithmetic that deviates from customary arithmetic. The forward pass through
a ReLU neural network layer x 7→ %(Wx + b) in interval arithmetic is as
follows: Given a component-wise interval valued input [x,x] and interval valued

https://github.com/husqin/DnCNN-keras
https://github.com/husqin/DnCNN-keras
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Input INNθ,θ,θ

[|]

[|]

[|]

[|]

[ |]
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[ | ]

[|]

[|]

[ | ]

[| ]

[ |]

[ | ]

[|]

Output

Max Output

Min Output

Uncertainty

Fig. 3. INN Schematic Overview. The structure of an Interval Neural Network
figure reproduced from [28] with permission from the authors.

weight matrices
[
W ,W

]
and bias vectors

[
b, b
]

the output interval [z, z] after
propagation through the layer is formally expressed as

[z, z] = %
([
W ,W

]
[x,x] +

[
b, b
])
.

In the special case where [x,x] is non-negative—for example image inputs scaled
to the intensity range [0, 1] or outputs of a previous ReLU layer—this can be
explicitly calculated via

z = % (max {W , 0}x+ min {W , 0}x+ b) ,

z = %
(
min

{
W , 0

}
x+ max

{
W , 0

}
x+ b

)
,

where the maximum and minimum functions are applied component-wise. Apply-
ing this for all network layers finally yields Φ and Φ.
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1. Adler, J., Öktem, O.: Learned Primal-dual Reconstruction. IEEE T. Med. Imaging
37(6), 1322–1332 (2018)
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