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Abstract

Providing force feedback as relevant information in current Robot-Assisted Minimally Invasive Surgery systems con-
stitutes a technological challenge due to the constraints imposed by the surgical environment. In this context, force
estimation techniques represent a potential solution, enabling to sense the interaction forces between the surgical instru-
ments and soft-tissues. Specifically, if visual feedback is available for observing soft-tissues’ deformation, this feedback
can be used to estimate the forces applied to these tissues. To this end, a force estimation model, based on Convolutional
Neural Networks and Long-Short Term Memory networks, is proposed in this work. This model is designed to process
both, the spatiotemporal information present in video sequences and the temporal structure of tool data (the surgical
tool-tip trajectory and its grasping status). A series of analyses are carried out to reveal the advantages of the proposal
and the challenges that remain for real applications. This research work focuses on two surgical task scenarios, referred
to as pushing and pulling tissue. For these two scenarios, different input data modalities and their effect on the force
estimation quality are investigated. These input data modalities are tool data, video sequences and a combination of
both. The results suggest that the force estimation quality is better when both, the tool data and video sequences, are
processed by the neural network model. Moreover, this study reveals the need for a loss function, designed to promote
the modeling of smooth and sharp details found in force signals. Finally, the results show that the modeling of forces
due to pulling tasks is more challenging than for the simplest pushing actions.
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1. Introduction

Traditional open surgery, characterized by long inci-
sions, has been improved by minimally invasive surgery,
which uses long instruments inserted into the body
through small incisions. An endoscopic camera provides5

visual feedback of the target scenario, and two or more sur-
gical instruments allow the surgeon to interact with tissues
and organs. Minimally invasive surgery has been extended
and enhanced in capabilities by robotic teleoperated sys-
tems with a master-slave configuration, resulting in a new10

procedure known as Robotic Assisted Minimally Invasive
Surgery (RAMIS) [1][2].

RAMIS provides surgeons with augmented capabilities,
such as fine and dexterous movements, proper hand-eye co-
ordination, hand tremor suppression and high-quality vi-15

sualization of the surgical scenario [2]. Nonetheless, the in-
tegration of force feedback as relevant information in these
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systems still remains an open problem [3][4]. Force feed-
back has proven to be beneficial in teleoperated surgery
since it is associated with the control of interaction forces20

and thus, its use can result in less intraoperative tissue
damage produced by the application of excessive forces.
Force feedback also helps to improve the proper execution
of surgical tasks, such as grasping or suturing, in which the
application of excessive or insufficient forces can produce25

damage or malfunctions. Furthermore, force feedback can
provide information of tissue stiffness and shape. There-
fore, it can help to detect abnormalities, such as tumors
or calcified arteries [5].

The main difficulty in providing RAMIS systems with30

force feedback relies on measuring interaction forces be-
tween surgical instruments and tissues. This problem can
be addressed by two approaches: direct force sensing and
sensorless force estimation. In direct force sensing, the
measurement of forces is carried out with a sensor located35

at, or close to, the point of interaction between tool and
tissue. Although it represents the most intuitive solution,
many constraints, such as biocompatibility, sterilization,
miniaturization, and cost [6], limit the design of such force
sensors. The need of miniaturization has been addressed40

in different works such as [7], where a laparoscopic instru-
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ment with force sensing capability is described. However,
its clinical validation has not been proven yet, since it was
only tested in an open platform for surgical robotics re-
search, called Raven-II [8]. In contrast, force estimation45

allows the removal of any electronic device from the instru-
ment in contact with the patient. Therefore, the interac-
tion forces have to be estimated from the available sources
of information, which may result in inaccurate measures.
Due to the aforesaid reasons, sensorless force estimation50

represents a potential solution for the practical implemen-
tation of force perception systems in RAMIS.

Sensorless force estimation can be implemented through
control-based or vision-based approaches. In the control-
based approach, interaction forces are estimated using ob-55

servers and models of the surgical tool, and by processing
available information from the motor units (i.e. angular
position/velocity, current consumption, and torque). In
this regard, some relevant works are focused on estimating
the surgical instrument grasping force, as described in [9]60

and [10]. In contrast, the vision-based approach consists
in estimating forces mainly from video sequences (monoc-
ular or stereo), therefore, in this work it is referred to as
Vision-Based Force Sensing (VBFS). In VBFS, the uncer-
tainty of the force estimates is reduced by having access65

to surgical tool data, such as tool-tip trajectory, its veloc-
ity, and grasper status. Although there are fewer works
in the literature related to VBFS, if developed properly, it
has potential to restore force feedback in robotic surgery.
VBFS avoids the need for accurate modeling of the surgi-70

cal instrument or slave-robot manipulator, as required by
most control-based approaches.

In the next section, deep neural networks are introduced
as effective models applied in the processing of video se-
quences (Section 1.1). Subsequently, the concept of VBFS75

is defined and different works reported in the literature are
described (Section 1.2). Finally, the proposed approach for
estimating forces in robotic surgery is presented and the
contributions of this research work are listed (Section 1.3).

1.1. Deep Neural Networks for Processing Video Se-80

quences

In recent years, Convolutional Neural Networks (CNN)
have shone light in tasks related to the processing of im-
ages. These models hold the state of the art results in
the task of image classification. In this context, some of85

the most representative CNN architectures that have been
proposed are AlexNet [11], VGG16 [12], RESNET [13],
and Inception [14]. A powerful property of CNNs is trans-
fer learning [15]. That is, given a CNN trained in a base
dataset and task, the learned features can be transferred90

to another CNN, to be trained in a different dataset and
task. For instance, [16] shows that a pre-trained Inception
model in the ImageNet dataset [17] (designed to classify
natural images), can be used in the classification of images
describing skin cancer lesions. This task was accomplished95

by fine-tuning the Inception model in a dataset of clinical
images labeled with the corresponding skin lesions. The

learned features by a pre-trained CNN can also be helpful
in the processing of data with a temporal constraint, as in
the application of video classification [18]. In the present100

work, the use of pre-trained models (i.e. the VGG16 net-
work) and the concept of transfer learning are exploited in
the force estimation task, as detailed later in Section 4.

In the processing of sequences of data with long-
term temporal dependencies, Long-Short Term Memory105

(LSTM) networks [19] have excelled, providing state of
the art results in applications such as language modeling
and translation, speech synthesis, and analysis of audio
and video data [20][21][22]. In particular, the LSTM net-
work with coupled input-forget gates, suggested by [21]110

as a less computational expensive model than the vanilla
LSTM network [23], was found suitable for the force esti-
mation task, as discussed later in Section 5.3.

Deep neural networks composed of CNNs and LSTM
networks have been investigated in different domains115

where the input data has a spatiotemporal structure, as
in video sequences. The CNN addresses the processing of
spatial information, while the LSTM network the process-
ing of temporal information. This neural network archi-
tecture has been applied in action recognition with visual120

attention [24], video activity recognition and image cap-
tioning [25], video content description [26], and learning
physical interaction through video prediction [27], among
others. A particular domain of interest is related to the
estimation of time-varying signals from video sequences in125

the context of a regression framework. In this regard, [28]
proposed a technique to estimate sound from silent video
sequences through a neural network consisting of a CNN
and LSTM networks. This neural network was trained us-
ing a video dataset, describing interactions of a wooden130

stick with different objects and materials with added au-
dio recordings. In another application, [29] developed a
technique to estimate continuous pain intensity from video
sequences of facial expressions. This technique is based on
a CNN with added recurrent connections in its layers.135

1.2. Vision-Based Force Sensing

The Vision-Based Force Sensing (VBFS) concept relies
on a simple observation, that is, soft bodies made of biolog-
ical (i.e. tissue) or artificial (i.e. silicone) materials deform
under an applied load. Therefore, if the deformation of140

soft bodies (i.e. biological tissues) is available from visual
feedback (i.e. video sequences), this feedback can be used
to estimate the forces applied on these objects, [30][31].
VBFS methods are developed to estimate forces in 2D or
3D scenarios. In the first case, a force applied to a soft145

body results in a deformed contour, while in the second
case, it produces a deformed surface.

Notable works, such as [31] and [32], developed the con-
cept of VBFS in 2D scenarios using neural networks. This
approach circumvents the explicit modeling of complex150

mechanical properties attributed to some materials (i.e. bi-
ological cells). In [31], VBFS is applied to estimate forces
in objects that exhibit both linear (a microgripper) and
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non-linear (a rubber torus) mechanical properties. This
method relies on a deformable template matching algo-155

rithm to describe the object’s contour deformation and a
fully-connected neural network that models the object’s
mechanical properties. The micromanipulation of cells
with a spherical shape has been addressed in [32]. In this
work, a method is developed to estimate force during mi-160

croinjection of zebrafish embryos. This method relies on
active contours and conic fitting algorithms to model the
cell’s contour deformation. Then, a fully-connected neural
network learns the non-linear relationship between defor-
mation and force.165

The estimation of interaction forces between tools and
tissues becomes more realistic when tissue deformation is
processed in 3D space, that is, by taking into account
depth information. To this end, a stereo vision system
is used to recover such information. Minimally invasive170

surgical procedures are complex, however, they can be in-
terpreted as the composition of different elementary sur-
gical tasks [33]. One of such tasks, referred to as pushing
tissue (pressing the end of the endoscopic tools against
soft-tissue), represents a common practice in minimally175

invasive surgery [34]. This surgical task is studied in the
context of VBFS due to its simplicity.

Force estimation techniques that rely on a stereo vision
system are reported in [34], [35], [36], [37] and [38]. In [34],
the forces developed in a rubber membrane are studied.180

Its deformation was recovered by tracking nodal displace-
ments and a finite element method was used to model the
mechanical relationship between deformation and force.
VBFS applied to neurosurgery was investigated in [35].
In this work, soft-tissue surface deformation is computed185

using a depth map extracted from stereo-endoscopic im-
ages. Thereafter, this information is processed by a surface
mesh (based on spring-damper models) to render force as
output. Another approach in the context of neurosurgery
has been investigated in [36]. The authors of this work de-190

veloped a method based on quasi-dense stereo correspon-
dence to recover surface deformation from stereo video se-
quences. Afterward, force is estimated from the surgical
tool displacement (which is extracted from the deforma-
tion data), using a 2nd order polynomial model. In recent195

years, models based on neural networks have been investi-
gated. In this regard, [37] proposed a method consisting in
a 3D lattice and a recurrent neural network. The 3D lat-
tice models the complex deformation of soft-tissues. The
recurrent neural network was designed to estimate force200

by processing the information provided by this lattice in
addition to the surgical tool motion. A subsequent no-
table work by the same author is presented in [38]. In this
work, the recurrent neural network described in [37] is im-
proved by designing a model based on the LSTM network205

architecture, achieving high accuracy in the estimation of
forces (in 3D space). Monocular force estimation repre-
sents a more challenging approach. In this regard, [39]
developed a technique to estimate forces from monocu-
lar video sequences using a real lamb liver as experimen-210

tal material. This method relies on a virtual template to
model soft-tissue surface deformation, however, it assumes
that soft-tissue surface behaves as a smooth function with
local deformation. Then, a stress-strain bio-mechanical
model defines the relationship between force and penetra-215

tion depth caused by the surgical tool.
From the literature review a series of conclusions are

drawn. First, most of the existing methods recover tissue
deformation using a stereo vision system ([34]-[38]). They
rely on a deformation model which is created based on 3D220

geometries such as a mesh or lattice (i.e. [35] and [38]), or
stereo-correspondences (i.e. [36]). Second, the estimation
of forces has been studied only for pushing tasks. Other
surgical tasks that result in complex interactions, such as
pulling or grasping tissue, have not been addressed yet.225

Third, recurrent neural network architectures have been
studied in [37] and [38], performing a mapping from soft-
tissue deformation and tool data to interaction force. From
these two works, only [38] describes the use of a deep neu-
ral network, specifically a LSTM network. Fourth, CNNs,230

which excel in tasks related to processing spatial informa-
tion present in images or video sequences (e.g., [11, 24, 40])
have not been explored in the processing of visual infor-
mation available from RAMIS systems. Fifth, monocular
force estimation was only addressed in [39]. Nonetheless,235

this method relies on feature detection and matching al-
gorithms that are not robust to specularities produced by
reflection of light on the tissue surface. Therefore, feature
points had to be detected and matched manually during
the reported experiments. Furthermore, the force was es-240

timated only for the loading cycle (when the tool is incre-
mentally deforming the tissue, before reaching the peak
force), and for one component (Fz). Finally, due to the
complexity of data acquisition (i.e. video sequences, tool
data and force sensing) in a real surgical scenario, most245

methods ([34]-[38]) are implemented and validated on ex-
perimental platforms using organs made of artificial tis-
sues (i.e. silicone). Only [39] describes experiments on a
real lamb liver.

The literature review shows that an approach based on250

deep neural networks, specifically, CNN and LSTM net-
works, has not been investigated for VBFS in robotic
surgery. Its advantages and downsides will reveal new
research directions to design a better force estimation
model that learns from data. In particular, transfer learn-255

ing techniques (i.e. using a pre-trained CNN on the Ima-
geNet dataset) have not been explored for VBFS in the
context of robotic surgery. They can be useful to en-
code complex phenomena (i.e. tool-tissue interactions) in a
low-dimensional feature vector representation learned from260

high-dimensional data, such as video sequences. This fea-
ture vector representation is easier to model by an LSTM
network.

1.3. Recurrent Convolutional Neural Network Approach

In the present work, a Recurrent Convolutional Neu-265

ral Network (RCNN) architecture, based on CNN and
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LSTM networks, is proposed for VBFS in RAMIS. It esti-
mates a 6-dimensional vector of forces and torques (in the
3D space) at every time instant, by processing monocular
video sequences and tool data.270

The focus of this research work is on the estimation of
interaction forces in two surgical tasks, pushing (pressing
the tool against a tissue) and pulling a tissue (which re-
quires grasping). This surgical task decomposition was
motivated by the discrete model presented in [33]. In that275

work, the complexity of minimally invasive surgical proce-
dures is modeled taking into account a set of fundamental
tasks, among them, pushing and pulling a tissue. More-
over, different input data modalities and their effect on
the force estimation quality are investigated. These input280

data modalities are: (i) the tool data represented by the
tool-tip trajectory (in 3D space) and its grasping status
(opened/closed), (ii) video sequences, and (iii) a combina-
tion of both. Finally, to facilitate the modeling of smooth
and sharp details found in the estimated force and torque285

signals, the RCNN is optimized with a loss function de-
signed with the Root Mean Squared Error (RMSE) and
Gradient Different Loss (GDL), respectively. The GDL
has been investigated in the prediction of future frames
from video sequences as discussed in [41], enabling a deep290

neural network to render sharp images, avoiding blurred
pixels. Nonetheless, this concept has neither been ex-
tended nor studied for the prediction of time-varying sig-
nals.

Although models based on CNN and LSTM networks295

have been investigated in different domains (as discussed in
Section 1.1), their application to the force estimation task
comes with its own challenges. Therefore, two important
goals of this research work are: (i) to reveal the advantages
and downsides of a force estimation model based on deep300

neural networks, and (ii) define future research directions
for its implementation on real scenarios. To this end, the
following contributions are made:

• A RCNN model is proposed for the estimation of in-
teraction forces between tool and tissue relying on a305

single camera. This method has potential applications
in scenarios where a stereo vision system is unavail-
able, and consequently, depth information.

• The effectiveness of applying transfer learning tech-
niques is investigated with the objective of finding a310

compact feature vector representation for every video
frame. For this purpose, the pre-trained VGG16
network in the ImageNet dataset is used. This ap-
proach allows encoding complex phenomena described
in video sequences, such as the deformation of tissues315

and specular reflections, in a feature vector represen-
tation automatically learned from data. This repre-
sentation is easier to process by a model that learns
sequences of data, such as an LSTM network.

• A loss function designed with the RMSE and GDL is320

investigated to facilitate the modeling of smooth and
sharp details found in force/torque signals. This loss

function composition provides more accurate force es-
timations than considering only RMSE during the
RCNN optimization.325

• Video pre-processing techniques, specifically mean
frame removal and space-time transformations, dis-
cussed in [42] and [28] respectively, were studied to
ease the learning process of the RCNN. Mean frame
removal was found useful to discard those regions in330

video sequences which do not contribute to the learn-
ing process, such as the static background. The space-
time transformation, allows emphasizing motion pro-
duced by tool-tissue interactions, in a new image rep-
resentation created from three consecutive frames.335

The next sections are organized as follows. Section 2
defines the problem statement. Section 3 describes the
dataset acquisition using an experimental robotic plat-
form, and the pre-processing operations applied to this
data. Section 4 details the proposed RCNN architecture340

for force estimation. Section 5 presents the experiments,
providing details related to the two stage RCNN optimiza-
tion, and describes how the robustness of the RCNN model
was evaluated. Section 6 discusses the results of the ex-
periments and analyses the quality of the estimated force345

signals with different metrics. Finally, Section 7 presents
the conclusions and future work.

2. Problem Statement

Given sequences of video frames Xvideo
t ∈ <h×w×c (h, w

and c stand for image height, width and number of chan-
nels, respectively) and tool data Xtool

t ∈ <8, the objective
is to find a non-linear model F(.) with parametersW, that
maps Xvideo

t and Xtool
t to a sequence of estimated forces

Ŷt ∈ <6 at each time instant t, as expressed in Equation
(1).

Ŷt = F(Xtool
t , Xvideo

t ;W) (1)

The elements of the input vector Xtool
t are shown in Equa-

tion (2), where P toolt = [xt, yt, zt] is a vector describing the
tool-tip trajectory in the 3D space, Λtoolt = [ut, vt, wt] is an
unitary vector that defines the tool orientation in 3D space
(coincident with the tool-axis direction), θt is the angle of
rotation around this axis, and st is the tool grasper status,
defined in Equation (3). The tool-tip trajectory (P toolt )
and its orientation (defined by Λtoolt and θt) are illustrated

in Fig. 1. The elements of the output vector Ŷt (shown
on the left of Equation (1)) are the estimated forces,

F̂t = [f̂xt , f̂
y
t , f̂

z
t ], and torques, T̂t = [τ̂xt , τ̂

y
t , τ̂

z
t ], in the

3D space. Thus, Ŷt = [F̂t, T̂t]
′ = [f̂xt , f̂

y
t , f̂

z
t , τ̂

x
t , τ̂

y
t , τ̂

z
t ]′.

Xtool
t = [P toolt ,Λtoolt , θt, st]

′ (2)

st =

{
1 If the grasper is open.

0 If the grasper is closed.
(3)

In the present work, F(.) is learnt from data by using a
deep neural network. Therefore, given a rich dataset D350
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Figure 1: Diagram of the experimental setup used to create the
dataset. In the bottom, the three blocks relate devices/sensors to
the recorded data (in vector form). {Oo} is the reference frame
assigned to the robot with axes, Xo, Y o, and Zo, while {Ootool} is the
reference frame of the surgical tool-tip with respect to the robot with
axes, Xo

tool, Y
o
tool, and Zotool. The origin of {Ootool} is located at the

tool-tip, and its Zotool axis is aligned with the tool shaft. Therefore,
the origin of {Ootool} describes the tool-tip trajectory at each time

instant t, P toolt = [xt, yt, zt]. The tool orientation is defined by the
unitary vector Λtoolt = [ut, vt, wt] and the scalar θt. The vector Λtoolt
has the same direction as the Zotool axis.

consisting of video sequences Xvideo
t , tool data Xtool

t and
ground-truth interaction forces Yt, the goal is to find the
parameters W that satisfy Equation (1) in the context
of an optimization framework. A causal constraint is en-
forced, that is, a estimated force vector Ŷt at the current355

time step, is computed by processing samples from Xvideo
t

and Xtool
t at the current and previous time steps (i.e. t,

t−1, t−2, t−3, ...). In the reported methodology and ex-
periments, the tool orientation remained fixed, therefore,
Xtool
t = [P toolt , st] = [xt, yt, zt, st]

′ ∈ <4. Nonetheless, in360

the general case, the full vector Xtool
t ∈ <8 should be con-

sidered.

3. Dataset Acquisition & Pre-processing

Due to the lack of public datasets related to the appli-
cation of VBFS in RAMIS, an experimental platform was365

designed to evaluate the proposed approach, as depicted in
Fig. 1. This platform was used to record video sequences,
tool data, and ground-truth interaction forces:

• Video Sequences. A collection of 44 video se-
quences, totaling 4.31 hours, were recorded using 4370

digital cameras (DFK 72BUC02) with the objective
to provide rich visual information from different per-
spectives. The four cameras were synchronized and
the video sequences were recorded with a resolution of
480×640 pixels at 50 frames per second, in RGB color375

space. The target scenario consists in a motorized sur-
gical instrument with grasping capability, mounted on
a slave robot manipulator (Stäubli RX60B) that in-
teracts with a digestive apparatus made of artificial

Figure 2: A sample of video frames recorded by the four synchronized
cameras. The tool is performing a pushing task over the artificial
organs (digestive apparatus).

tissue (Silicone-Smooth On ECOFLEX 0030). A sam-380

ple of frames captured by the 4 cameras illustrates the
aforesaid scenario in Fig. 2. They show specularities
and highlights rendered on the artificial tissue sur-
face, a phenomenon that is present in real minimally
invasive surgery scenarios.385

• Tool Data. The tool-tip trajectory in the 3D space
(P toolt = [xt, yt, zt]) and the tool grasping status (st)
were provided, at each time instant, by the slave robot
manipulator and the motorized surgical instrument,
respectively.390

• Ground-Truth Force. The interaction forces and
torques between the surgical instrument tip and arti-
ficial tissue were acquired by a 6D force/torque sensor
(ATI Gamma SI-32-2.5) with its z axis aligned with
the surgical instrument shaft. The measured forces lie395

in the range +2.5/-10 N and the torques in ±5 Nm,
which are consistent with those values reported in a
real scenario [43].

Thereafter, a series of pre-processing operations were
applied to the tool data, ground-truth interaction force400

and video frames. The pre-processing of the tool-tip tra-
jectory P toolt = [xt, yt, zt], was carried out by removing the
mean and subsequently scaling its amplitude to the range
±1. The grasper status st does not need any process-
ing. The ground-truth interaction forces, Yt, were com-405

pensated with an offset and scaled to the range -0.7/+0.5.
In this representation, the force components are dimen-
sionless, with a mean close to zero and similar variances.
This normalization procedure is suggested in [44]. Addi-
tional processing steps, such as time shifting and resam-410

pling, were applied to both, tool data and ground-truth
forces, to synchronize them with the video frames. More-
over, a low-pass filter was used to remove the noise from
the ground-truth force data.
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Figure 3: Block diagram of the pre-processing steps applied to video
frames.

Video frames required more elaborated pre-processing415

steps, which can be summarized in the block diagram
shown in Fig. 3, where Xvideo

t and Uvideot represent the
raw and pre-processed video frames, respectively. Each
operation in the block diagram was implemented using
OpenCV [45] and is described as follows:420

1. Mean Frame Removal. A mean frame was com-
puted for every video sequence by averaging all the
raw frames (with equal contribution). Subsequently,
a subtraction operation was performed over the RGB
channels, by removing the corresponding mean frame425

from all the raw frames in the corresponding video
sequence. During this process, the pixel values were
scaled properly, to conserve negative values. In [42],
this method was shown to reduce over-fitting of CNNs
due to static background present in video sequences.430

2. Tracking of Regions of Interest. To provide
meaningful visual information to the proposed net-
work, a region of interest of dimensions 200×300 pix-
els, corresponding to the area of interaction between
tool and tissue, was tracked and extracted from every435

mean-normalized frame (480×640 pixels). This oper-
ation was carried out by processing mean-normalized
and raw frames. The result is a mask of foreground
pixels describing image regions where tool-tip motion
is present. For this purpose, each RGB frame was fil-440

tered with a non-local means denoising algorithm [46]
and converted to grayscale. Afterward, a mask of
foreground pixels was computed based on image dif-
ferences between the current and a finite sequence of
past frames (including a frame of the static scenario),445

followed by denoising (with a normalized box filter)
and thresholding (to get the actual mask) operations.
Finally, this mask was refined with morphological op-
erations (i.e. erosion and dilation).

3. Space-Time Frame Transformation. This trans-450

formation, described in [28], is applied over the ex-
tracted regions of interest with the objective to model
tool motion and tissue deformation. It represents
an alternative method to the optical flow, which is
computationally more expensive. A space-time frame455

is defined by the previous, current and next RGB
frames, each one converted to grayscale. During the
experiments, this operation was carried out by con-
catenating these three frames only every 15 samples.
This undersampling is due to the high frame rate of460

the cameras and the slow motion of the surgical tool.

A comparison between regions of interest extracted from
the raw, mean-normalized and space-time frames is pre-

(a) Pushing Task

(b) Pulling Task

Figure 4: A sample of raw video frames after the mean frame has
been removed and the space-time transformation has been applied,
for each surgical task.

sented in Fig. 4, for each surgical task. The last row of
Fig. 4a and Fig. 4b shows that both, tool motion and tis-465

sue deformation are emphasized in the space-time domain,
and specular reflections are partially suppressed.

4. Force Estimation Model

The intuition behind the design of the force estimation
model is guided by the structure of the input and out-470

put data to be processed. Video sequences can be inter-
preted as data with a spatiotemporal structure. On the
other hand, tool data and interaction forces, represent se-
quences data with only a temporal structure. Therefore,
the force estimation model should be designed as a func-475

tion that maps an input sequence (i.e. video sequences
and tool data) to an output sequence (interaction forces),
while preserving the structure of data. For this aim, a
Recurrent Convolutional Neural Network (RCNN) is pro-
posed to carry out the force estimation task. It consists of480

a Convolutional Neural Network (CNN) serially connected
with a Long-Short Term Memory (LSTM) network. The
RCNN is depicted in Fig. 5. This illustration shows the
flow of data from the input to the output in four stages,
and each neural network is optimized separately (as de-485

scribed in the second and fourth stages):

• First, pre-processing operations are applied to the raw
video sequences (in RGB color space with a resolution

6



Figure 5: The RCNN architecture consists in a CNN serially connected with an LSTM network. First, pre-processing operations are applied to
the input data consisting of raw video sequences (Xvideo

t ) and tool data (Xtool
t ). Therefore, a sequence of raw data (Xvideo

t and Xtool
t ) of size

Mr is transformed into a new sequence of pre-processed data (Uvideot and φtoolt , respectively) of size Mp, where Mp < Mr. The size difference
of these two sequences results from the space-time transformation applied to raw video frames, which is computed by concatenating three
consecutive (grayscale) frames spaced in time (in the experiments this spacing correspond to 15 frames). Subsequently, the CNN extracts
feature vectors (φvideot ) from the pre-processed input video sequence (Uvideot ). Afterwards, these feature vectors (φvideot ) and the normalized
tool data (φtoolt ) are concatenated, resulting in a new feature vector (Φt). Finally, these new feature vectors (Φt) are fed into the LSTM

network, which models their temporal structure to render the estimated force as output (Ŷt).

of 480 × 640 pixels), Xvideo
t ∈ <480×640×3, and tool

data, Xtool
t ∈ <4, resulting in the space-time frames490

(in RGB color space with a resolution of 224 × 224
pixels), Uvideot ∈ <224×224×3, and the normalized tool
data, φtoolt ∈ <4, respectively.

• Second, the modeling of the spatial information
present in video sequences is carried out by the495

CNN, specifically, the pre-trained VGG16 network
model [12] (shown in Fig. 5 as the block in blue color).
In the training stage, this neural network is optimized
for a regression task on the dataset. The input and
output data consist of space-time frames, Uvideot , and500

ground-truth interaction forces, Yt ∈ <6, respectively.
Subsequently, in the inference stage, the VGG16 net-
work is used as a feature extractor. It computes a fea-
ture vector representation, φvideot ∈ <4096, which en-
codes high-level abstractions of the input data, Uvideot .505

The VGG16 network and the feature vector extraction
process are detailed in Section 4.1.

• Third, the information present in tool data and video

sequences is encoded in a single feature vector rep-
resentation, Φt. For this purpose, the feature vectors510

φtoolt (the normalized tool data) and φvideot (computed
by the VGG16 network), are concatenated, resulting
in Φt = [φvideot , φtoolt ]′ ∈ <4100.

• Fourth, the temporal information present in the new
feature vector representation, Φt, is modeled by the515

LSTM network over T time steps (shown in Fig. 5
as the block in red color). In the training stage, the
LSTM network is optimized for a regression task, by
taking a sequence of feature vectors Φt as input (at
the current and previous time steps, i.e. Φt, Φt−1,520

Φt−2, ..., Φt−(T−1)), and a sequence of ground-truth
interaction forces Yt ∈ <6 as output (at the current
time step t). Thereafter, in the inference stage, the
LSTM network processes a sequence of feature vectors
Φt (i.e. Φt, Φt−1, Φt−2, ..., Φt−(T−1)), to estimate a525

single force vector Ŷt ∈ <6, at the current time instant
t.
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Figure 6: VGG16 network [12] used for fine-tuning and feature vector extraction. It consists of 13 convolutional (kernel size of 3× 3) and 3
fully-connected layers. In this illustration, the convolutional layers are grouped into CONV 1, ..., CONV 5. The fully connected layers are
referred to as FC6, FC7, and FC8. The rectified linear unit is used as activation function in all layers except the output layer, O9, which
is densely connected with a linear activation. The number of output feature maps for each convolutional layer and the size of each fully
connected layer are indicated with the last number inside the corresponding layer. At test time, the feature vectors φvideot ∈ <4096, are
extracted from the layer FC7 (shown in blue color).

4.1. Feature Vector Extraction from Video Sequences

For the task of feature vector extraction from video se-
quences, the pre-trained VGG16 network was fine-tuned530

on the dataset. Specifically, in this process, the VGG16
network computes a force vector as output conditioned on
an input video frame, while the network’s parameters, in
all layers, are adjusted in the context of an optimization
framework. During the fine-tuning process, generic fea-535

tures (i.e. computed in the first and second layers) are less
prone to change, while specific features (i.e. computed to-
wards the last layer) will be adjusted according to the force
estimation dataset. The VGG16 network, shown in Fig. 5
as the block in blue color, is detailed in Fig. 6. To match540

the neural network output size with that of the force vec-
tors, the softmax layer of dimension 1000 (found in the
original VGG16 network), was replaced by a densely con-
nected layer of dimension 6 (with linear activation). Thus,
only these parameters were optimized from scratch. The545

space-time frames (Uvideot ) were resized preserving their
aspect ratio (by centered cropping and resampling opera-
tions), from 200 × 300 to 224 × 224 pixels (matching the
network’s input size). After the fine-tuning process is com-
pleted, the feature vectors φvideot , are extracted from the550

fully-connected layer FC7 (shown in Fig. 6 in blue color).

4.2. Loss Function Design

The loss function has an important impact in the design
of deep neural networks applied to regression tasks. This
impact is also extended to the design of regression models555

based on CNNs. For instance, human pose estimation was
studied in [42] with a CNN optimized with the standard L2
loss function (sensitive to outliers) to penalize the distance
between predicted and ground-truth upper-body joint po-
sitions. The same application was investigated in [47], by560

minimizing Tukey’s bi-weight function to achieve robust-
ness against outliers. Recently, [41] proposed a method
for predicting future images from a video sequence by the
minimization of a loss function that takes into account
the Gradient Different Loss (GDL). This method allows565

overcoming the prediction of blurry images when only the
mean squared error is considered in the loss function. In
the present work, the GDL has been extended to the esti-
mation of time-varying force signals. Therefore, each net-
work (CNN and LSTM), that defines the proposed RCNN570

architecture was optimized separately with a loss func-
tion composed of the Root Mean Squared Error (RMSE),
and the GDL. The RMSE penalizes the distance between
estimated and ground-truth 6D force vectors, while the
GDL the distance between their gradients. Intuitively, the575

RMSE and GDL ease the modeling of smooth and sharp
details found in force/torque signals, respectively.

The loss function discussed above, denoted as L ∈ <, is
mathematically expressed in Equation (4), where α ∈ [0, 1]
represents a trade-off between the RMSE (LRMSE ∈ <)
and GDL (LGDL ∈ <). The RMSE, expressed in Equa-
tion (5), computes the distance between the ground-truth

Y
(j)
i ∈ < and the estimated Ŷ

(j)
i ∈ < force components,

where i indexes the samples in the dataset D and j the N
force components. In this equation, ρ(xi) ∈ < is a func-
tion applied to the scalar xi ∈ <, which is computed for
the i-th sample in the dataset. The parameters described
for the RMSE are also found in the GDL expressed in
Equation (6).

L = αLRMSE + (1− α)LGDL (4)

LRMSE =

|D|∑
i=1

ρ(xi), xi =

√√√√ 1

N

N∑
j=1

(Y
(j)
i − Ŷ (j)

i )2 (5)

LGDL =

|D|∑
i=1

ρ(xi), xi =
N∑
j=1

∣∣∣|Y (j)
i − Y (j)

i−1| − |Ŷ
(j)
i − Ŷ (j)

i−1|
∣∣∣ (6)

As mentioned in the beginning of this section, the RCNN
optimization consists in two stages. In the first stage, the
VGG16 network (shown in Fig. 6) is fine-tuned with a loss
function defined in Equations (4)-(6). This neural network
F1 with parameters W1, is represented by Equation (7),

where Ŷi ∈ <N stands for the estimated force vector, given
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as input the i-th space-time frame, Uvideoi . In the subse-
quent stage, the LSTM network F2 with parameters W2

shared across T time steps, is trained using the same loss
function. This neural network is expressed in Equation (8).

It outputs Ŷi ∈ <N , that is, the estimated force vector at
the time instant i, given as input a sequence of T feature
vectors Φd, at time steps d = i, i− 1, i− 2, ..., i− (T − 1),
(see the LSTM network depicted in Fig. 5).

Ŷi = F1(Uvideoi ;W1) (7)

Ŷi = F2(Φd;W2) (8)

The selection of ρ(xi) in Equation (5) and (6), was dif-
ferent for each optimization step. Motivated by the work
in [28], the VGG16 network was fine-tuned with the log-
arithmic function stated in Equation (9), where the in-
dex i is omitted for clarity in the notation, γ ∈ < is a
parameter, and ε a small positive constant (which avoids
the evaluation of the logarithmic function at zero). This
function saturates large gradients produced by the error
between ground-truth and estimated data, adding robust-
ness to the optimization. Equation (9) was applied to (5)
using γ = 2.0, resulting in a function that operates over
the mean squared differences between ground-truth and
estimated data. In contrast, Equation (9) was applied to
(6) with γ = 1.0, resulting in a function that process the
absolute difference of residuals. Another design choice for
ρ(xi) consist of a linear function, shown in Equation (10)
(where the index i is omitted), which provides better con-
vergence during the LSTM network optimization.

ρ(x) = ln (xγ + ε) (9)

ρ(x) = x (10)

5. Experiments

The proposed RCNN architecture was implemented in
Python using the Tensorflow [48] framework. The exper-580

iments were carried out using multiple Graphics Process-
ing Units (GPU), including the NVIDIA Titan X and Tesla
K80. The dataset samples (including video sequences from
the four cameras, tool and force data vectors) were split
into the training and test sets, as detailed in Table 1.585

5.1. Experiments Design

First, the VGG16 network is fine-tuned with the ob-
jective to find a feature vector representation φvideot ∈
<4096, for every space-time frame Uvideot ∈ <224×224×3 (see
Fig. 6). Subsequently, in the LSTM network optimization,590

three types of feature vectors Φt (processed at every time
step t), were evaluated as input data:

• Case I. Only tool data as input: Φt = φtoolt ∈ <4.

• Case II. Only feature vectors extracted from video
sequences as input: Φt = φvideot ∈ <4096.595

• Case III. Both, tool data and feature vectors
extracted from video sequences as input: Φt =
[φvideot , φtoolt ]′ ∈ <4100.

For each aforesaid case, two loss functions were evaluated
to investigate the contribution of the RMSE and GDL600

terms that appear in Equation (4):

• Loss A. Setting α = 0.75 results in the loss L =
0.75LRMSE + 0.25LGDL. Thus, more importance is
given to the RMSE than to the GDL, due to the faster
convergence of the former term compared to the lat-605

ter.

• Loss B. Setting α = 1.0 results in the loss L =
LRMSE . Therefore, only the RMSE is considered in
the optimization.

Therefore, a total of six cases, following the format case610

number-loss type, were analyzed during the LSTM network
optimization. These cases are referred to as I-A, I-B, II-A,
II-B, III-A, and III-B.

During the RCNN optimization, the normalized ground-
truth force data, in the range -0.7/+0.5, were scaled by a615

factor K > 1. This strategy avoids rendering vanishing
gradients, which are unhelpful to update the neural net-
work parameters. Specifically, with K = 1, the loss com-
puted with Equation (4) becomes close to zero even at the
beginning of the RCNN optimization (and consequently620

the gradients). Thus, during the VGG16 network fine-
tuning and LSTM network optimization, the normalized
ground-truth force data were scaled by a factor K = 10, re-
sulting in the range -7/+5 (which includes both the train-
ing and test sets). In the inference stage, the estimated625

forces by the RCNN are dimensionless and, because of the
scaling factor, they lie in the range -7/+3 (only the test
set).

The optimization of the VGG16 and LSTM networks is
detailed in Sections 5.2 and 5.3, respectively. Then, in Sec-630

tion 5.4, an ablation study is described, which reveals the
importance of each neural network in the RCNN model.
Afterward, in Section 5.5, additional experiments are de-
tailed, whose objective is to evaluate the robustness of the
proposed RCNN model. Finally, Section 5.6 explains an635

experiment in which a time-series model is studied in the
force estimation task.

5.2. VGG16 Network Fine-tuning

The VGG16 model, with weights pre-trained on the Im-
ageNet dataset [17], was fine-tuned with Equation (4) us-640

ing the Root Mean Squared Error Propagation (RMSProp)
optimizer [49], completing over 100K iterations. In partic-
ular, during this process, all the network parameters were
fine-tuned, except those found in the last layer (referred to
as layer O9 in Fig. 6), which were optimized from scratch.645

Table 2 lists the hyper-parameters used during the opti-
mization process, which were adjusted experimentally. In
particular, α was set to 0.8 due to the faster convergence
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Table 1: Dataset samples used in the experiments: (a) Complete
dataset including both, pushing and pulling tasks, (b) dataset de-
scribing only pushing and (c) pulling tasks.

Dataset Video Sequences Samples(1) Percentage

Type # Files Duration(2)

(a) Complete Dataset (100% of the total data samples)

Training 28 ∼3 h 19 min 597388 77%

Test 16 ∼1 h 179292 23%

Total 44 ∼4 h 19 min 776680 100%

(b) Pushing Tasks (59% of the total data samples)

Training 16 106.26 min 318776 70%

Test 12 46.48 min 139448 30%

Total 28 152.74 min 458224 100%

(c) Pulling Tasks (41% of the total data samples)

Training 12 92.87 min 278612 87%

Test 4 13.28 min 39844 13%

Total 16 106.15 min 318456 100%
(1) Each sample consists of a video frame (224×224×3), a (4-

dimensional) tool data vector, and a (6-dimensional) ground-truth
force vector.

(2) Computed as T = N/Fr, where T is the video duration, N the total
number of frames, and Fr is the frame rate (50 frames per second).

of the RMSE compared to the GDL, while ε was set to
1/100 for numerical stability.650

The VGG16 model accuracy was evaluated with the
Mean Absolute Error (MAE), shown in Equation (11),
where M and N stand for the number of samples and
force components, respectively. The MAE was computed
in the training and test sets every 10K iterations. The
model accuracy and the training loss are depicted in Fig.
7. Additionally, the evolution of the error corresponding
to the j-th force component, ej , with j = 1, ..., N , was cal-
culated in the training set using Equation (12). This error
is depicted in Fig. 8 on a logarithmic scale (i.e. ln(ej))
and was computed every 250 iterations.

MAE =
1

M

M∑
i=1

N∑
j=1

|Y (j)
i − Ŷ (j)

i |, MAE ∈ < (11)

ej =

√√√√ M∑
i=1

(Y
(j)
i − Ŷ (j)

i )2, ej ∈ < (12)

After the VGG16 network was fine-tuned on the video
dataset, visual features φvideot were extracted from the
fully connected layer FC7 (see Fig.6), replacing the rec-
tified linear unit by the hyperbolic tangent (Tanh) non-
linearity. By applying the Tanh non-linearity, all values655

present in the feature vectors are squashed between ±1.
This range of values is expected in the feature vectors to
be processed by the LSTM network (during both training
and inference stages) since the block-input of this network
has the Tanh non-linearity as the activation function (as660

described in [21]). Each feature vector computed by the
VGG16 network can be interpreted as a learned represen-
tation in the low-dimensional space (φvideot ∈ <4096) for
each input video frame that lies in the high-dimensional
space (Uvideot ∈ <224×224×3).665

Table 2: Hyperparameters used for the VGG16 model fine-tuning.

Hyperparameter Value

Learning Rate, λ 1× 10−5

Batch Size, M 50 samples

Dropout (Fully-Connected Layers) 50 %

Parameter α in Equation (4) 0.8

Parameter ε in Equation (9) 1/100

Figure 7: Computed loss (in red) and accuracy (in blue), during the
fine-tuning of the VGG16 network.

Figure 8: Logarithm of the error per force component computed (on
data in the training set) during the fine-tuning process.

5.3. LSTM Network Optimization

Three models were empirically evaluated in the force
estimation task: (i) The vanilla LSTM network [23] (with
added peephole connections), (ii) the coupled input-forget
gate variant of the LSTM network (LSTM-CIFG) [21], and670

(iii) the Gated Recurrent Unit (GRU) [22]. In terms of
convergence and quality of prediction, the LSTM-CIFG
was superior to the vanilla LSTM and GRU networks.
The worst results were obtained with the GRU model.
Therefore, the LSTM-CIFG network was selected to carry675

out the experiments and predict interaction forces between
surgical instruments and tissues.

The LSTM-CIFG network was trained with the RM-
SProp optimizer, using the hyper-parameters listed in Ta-
ble 3. For case I, this neural network was designed with680

only 64 cell units per layer due to the low dimensionality
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Table 3: Hyperparameters used for the LSTM network optimization.

Case I II III I II III

Loss Function A(1) B(2)

Number of Layers 2

Cells per Layer 64 256 256 64 256 256

Time Steps 64

Learning Rate, λ 0.0025

Batch Size, M 512 samples

Dropout L1(3) 75% 25% 25% 75% 25% 25%

Dropout L2(4) 75% 25% 25% 75% 25% 25%

Iterations(5) 99.0 39.7 57.9 99.0 49.1 26.7
(1) Loss function A: L = 0.75LRMSE + 0.25LGDL.
(2) Loss function B: L = LRMSE .
(3) Dropout applied to layer 1 (L1).
(4) Dropout applied to layer 2 (L2).
(5) Total number of iterations (×1000).

of the input data (φtoolt ∈ <4), avoiding over-fitting in the
training set. In contrast, the neural networks designed for
cases II and III required higher capacity (i.e. more param-
eters) due to the complexity added by the feature vectors685

(φvideot ∈ <4096) in the input data. Therefore, these neural
networks were designed with 256 cell units per layer. In all
the six cases (I-A, ..., III-B), dropout was applied at the
output of each layer as a method for regularization to pre-
vent over-fitting (a higher value was set for the case I). For690

each case and loss function studied, the total number of
iterations required to optimize the LSTM-CIFG network
is shown in the last row of Table 3. The optimization
was stopped after observing that the loss value reached a
plateau, and there was no visible improvement in test set695

accuracy.
The quality of the predicted force signals with respect to

the ground truth was assessed by considering two metrics,
the Root Mean Square Error (RMSE) and the Pearson
Correlation Coefficient (PCC).700

5.4. Ablation Study

An ablation study was performed on the RCNN ar-
chitecture to reveal the importance of its components.
Specifically, the quality of the force vectors rendered by
the VGG16 network was contrasted against that result-705

ing from the VGG16 network serially connected with the
LSTM-CIFG network. The quality of these vectors was
measured with the mean absolute error, defined in Equa-
tion (11), using samples from the test set.

5.5. Robustness of the RCNN Model710

Two experiments, described below, were carried out to
evaluate the robustness of the RCNN model.

In the first experiment, the robustness of the RCNN
model against noise, z, added to normalized tool data,
φtoolt , was evaluated. The noise, z, was sampled from a715

Gaussian distribution with zero mean, µ = 0, and finite
variance, σ2. Thus, z ∼ N (0, σ2). This noise was designed
taking into account the statistics of the tool data, specifi-
cally, its mean-squared-value (0.0972) and standard devi-
ation (0.3114). As the noise intensity was strengthened by720

increasing its variance (from σ2 = 0.0012 to σ2 = 142),
the deterioration of the estimated force signal quality was
measured with the PCC and RMSE metrics.

In the second experiment, the RCNN model perfor-
mance was evaluated by feeding this neural network with725

input video sequences pre-processed in offline and real-
time modes. In offline mode, the whole video sequence is
available for computing and applying pre-processing op-
erations on raw frames, namely mean frame removal and
space-time transformation. In contrast, in the real-time730

mode, only the past frames from video sequences can be
used to perform such pre-processing operations. In the
context of a real-time scenario, the computation of a mean
frame followed by its subtraction from a specific video se-
quence represents a key pre-processing operation that has735

an impact on the quality of the estimated force signals.
Therefore, in the real-time mode, the mean frame was com-
puted by averaging only past frames in a video sequence.
On the other hand, in the offline mode, the mean frame was
obtained by averaging all the frames in a video sequence (in740

the experiments described in Sections 5.2 and 5.3, it was
assumed that all video sequences were available offline).
Afterward, the quality of the force estimations that re-
sulted from each pre-processing mode was compared. Two
samples of video sequences (from the test set) were used in745

this experiment, each one related to pushing and pulling
tasks. This analysis reveals that the RCNN model is suit-
able for the task of force estimation in real-time. However,
there is a small degradation of the quality of the estimated
force signals with respect to the offline mode. These re-750

sults will be discussed in the next section.

5.6. RCNN Model vs Time Series Model

A simpler method (not based on neural networks) than
the proposed RCNN was investigated in the task of force
estimation. For this purpose, a Multiple-Input Multiple-
Output (MIMO) Auto-Regressive Moving Average Model
with eXogenous Inputs (ARMAX), commonly used in the
context of time series modeling and system identification,
was selected to model the complex relationship between
the input tool data and the output interaction forces. The
structure of this model is given in Equation (13), where
y(t), u(t), and e(t) are vectors with Ny outputs, Nu in-
puts, and Ne disturbances (at the time instant t), re-
spectively. The polynomial matrices, A(q−1) ∈ <Ny×Ny ,
B(q−1) ∈ <Ny×Nu and C(q−1) ∈ <Ny , are defined as a
function the shift operator, q. The matrix A(q−1) of or-
der r and parameters a1, a2, ..., ar, is shown in Equation
(14), while B(q−1) of order s and parameters b0, b1, ..., bs,
in Equation (15). In this study C(q−1) = I, being I the
identity matrix, as shown in Equation (16). The distur-
bance vector, e(t), represents a source of white-noise with
variance 1.0.

A(q−1) y(t) = B(q−1) u(t) + C(q−1) e(t) (13)

A(q−1) = 1 + a1q
−1 + a2q

−2 + ...+ arq
−r (14)
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B(q−1) = b0 + b1q
−1 + b2q

−2...+ bsq
−s (15)

C(q−1) = I (16)

Equation (13) was implemented in SCILAB [50], and its
parameters (a1, a2 ..., ar, b0, b1,..., bs) were estimated
with the method described in [51]. During the optimiza-755

tion stage, the ground-truth force (Y ∈ <6) and tool data
(φtoolt ∈ <4) were processed at the current and previous
time steps, by setting r > 0 and s > 0 in Equations (14)
and (15), respectively. Specifically, the ARMAX model
performed better with r = 0, which discards the auto-760

regressive component of the output y(t), and s = 255
(which represents an optimal trade-off between time com-
plexity vs accuracy), enforcing the processing of input
samples u(t) at the time instants t, t− 1, t− 2, ..., t− 255.
Thus, in the inference stage, an output sample, y(t), was765

estimated from the input samples u(t), u(t−1), u(t−2), ...,
u(t− 255), in addition to the disturbance e(t), scaled by a
factor of 1×10−4. In terms of parameters, the complexity
of the ARMAX model is lower with respect to the RCNN
architecture. However, it is expected the ARMAX model770

to describe, up to some extent, the relationship between
low dimensional data, such as the tool and force data.

6. Results & Discussion

The results and discussion of the experiments are pre-
sented in five sections. First, Section 6.1 describes the re-775

sults of the LSTM-CIFG network optimization (which out-

puts the estimated interaction force, Ŷt, given as input the
feature vectors, Φt) and discusses the six cases studied (I-
A, ..., III-B). Then, Section 6.2 presents the results of the
ablation study detailed in Section 5.4. Subsequently, Sec-780

tion 6.3 reports the results from the experiments related
to the robustness of the RCNN model in the conditions
described in Section 5.5. Afterward, Section 6.4 contrasts
the force estimation quality of the RCNN model against
the ARMAX model. Finally, Section 6.5 discusses the key785

ideas to improve the RCNN model in the context of real
applications. All the results shown in Tables 4, 6, and 7,
and Figs. 9-12, were computed using the normalized sig-
nals provided by the RCNN, which are dimensionless and
in the range -7/+3. On the other hand, Table 5 shows790

the force estimation quality, measured with the RMSE, in
physical units.

6.1. Estimated Force Signals

After the LSTM-CIFG network optimization was com-
pleted, the quality of the estimated force signals (in the795

test set) was measured with the RMSE and PCC metrics.
These metrics are shown in Fig. 9 for each surgical task
(pushing and pulling), case (I, II and III) and loss function
(loss A and B). From this illustration, case III-A stands
out as the best model (solid line in red color), since it has800

higher PCC values and lower RMSE values with respect
to the other cases. On the other hand, the metrics for case

Table 4: Maximum, minimum, and mean values of the Pearson Cor-
relation Coefficient (PCC) and Root Mean Squared Error (RMSE)
metrics (shown in Fig. 9) computed for every studied case (I-A, I-B,
..., III-B), across the six force components.

Case Pushing Task Pulling Task

Max Min Mean Max Min Mean

PCC (Values closer to 1.0 are better)

I-A 0.3800 -0.1351 0.0450 0.2110 -0.1732 0.0636

I-B 0.3655 0.0406 0.1263 0.4901 -0.0241 0.2232

II-A 0.8877 0.2474 0.5175 0.7002 0.5492 0.6100

II-B 0.8869 0.2405 0.5097 0.7086 0.5342 0.6024

III-A 0.8957 0.2674 0.5466 0.7164 0.5252 0.6280

III-B 0.8469 0.1841 0.4016 0.6860 0.5367 0.6141

RMSE (Values closer to 0.0 are better)

I-A 1.1997 0.3502 0.6407 0.8517 0.4329 0.6509

I-B 1.3149 0.2785 0.5672 0.8278 0.4349 0.6313

II-A 0.4531 0.1732 0.3137 0.7043 0.3321 0.5195

II-B 0.4531 0.1726 0.3098 0.6962 0.3419 0.5161

III-A 0.4567 0.1598 0.3038 0.6778 0.3199 0.5041

III-B 0.6592 0.2596 0.3967 0.6756 0.3320 0.5168

Table 5: Case III-A: Root Mean Squared Error (RMSE), where the
force and torque units are expressed in Newtons (N) and Newtons
per meter (Nm), respectively.

Task Fx Fy Fz Tx Ty Tz

Pushing 0.0615 0.0446 0.5536 0.1405 0.1810 0.0116

Pulling 0.0756 0.0914 0.4447 0.5957 0.2830 0.0191

III-B (dotted line in dark red color) fall behind those at-
tributed to case III-A in a pushing task (left column), while
for pulling tasks (right column) they are close in proxim-805

ity. For cases II-A (solid line in green color) and II-B (dot-
ted line in dark green color), the PCC and RMSE values
are slightly behind the accuracy reported for case III-A.
Therefore, the second best model could be either, case II-
A or II-B, since their values are very close to each other.810

Finally, cases I-A (solid line in blue color) and I-B (dotted
line in dark blue color), represent the worst models.This
conclusion is also justified in Table 4, which presents, for
every studied case (I-A, ..., III-B), the maximum, mini-
mum and mean values computed from the metrics (corre-815

sponding to the six force components) displayed in Fig. 9
(the best values are highlighted in bold). The results
presented in Fig. 9 and Table 4 suggest that the RCNN
performs best when it is optimized with a loss function ex-
plicitly designed to model smooth and sharp details found820

in time-varying signals. In this work, the RMSE and GDL
were used to promote such behavior, allowing the modeling
of smooth and sharp (i.e. signal peaks) details attributed
to force/torque signals. Nonetheless, other distance func-
tions could potentially be applied for the same purpose.825

Moreover, these results show that it is important to pro-
vide the RCNN with both video sequences and tool data
during the training and inference stages.

The force estimation quality (from the test dataset) cor-
responding to case III-A (with the highest accuracy) is de-830

scribed in Fig. 10 and Table 5. The neural network output
vs target plot and the PCC are shown in Fig. 10, while the
RMSE in force and torque units is reported in Table 5.
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In Figs. 9 and 10 is observed a high PCC value (0.8957)
and low error present in the Fz force component related835

to pushing tasks. Regarding pulling tasks, the estimated
force Fz has also higher PCC value (0.7164) with respect
to the rest of force components. However, it falls below
the PCC value reported for pushing tasks. These results
suggest that interaction forces produced by pushing tasks840

(smooth signals) are easier to model than those generated
by pulling tasks (irregular signals). A possible explanation
of these results can be deduced from the video frames com-
puted in the space-time domain, depicted in Fig. 4.Thus,
when dealing with pushing tasks, tool-tissue interactions845

seem to be regular and independent of the organs’ geom-
etry. For instance, the point of interaction is defined by a
small contact area with an oval shape (Fig. 4a). In con-
trast, those interactions resulting from pulling tasks are
more irregular and highly dependent on the organs’ ge-850

ometry (Fig. 4b). The slightly imbalance in the dataset
samples that represent each surgical task, may be a small
contributing factor for this result (59% and 41% of the
dataset samples correspond pushing and pulling tasks, re-
spectively, as shown in Table 1).855

The results of Table 5 show the potential of the proposed
RCNN architecture, upon which new models can be de-
vised. For real operational purposes, the RMSE for forces
is reported to fall below 0.1 N in both vision-based [38]
and prototyped sensors [52].860

A sample of estimated forces (from the test dataset)
between the surgical instrument and the tissue (normal-
ized in the range -7/+3), related to case III-A is shown
in Fig. 11a and Fig. 11b for pushing and pulling tasks,
respectively. Fig. 11a shows that the amplitude of most865

interaction forces (estimated for pushing tasks) are close
to zero, with the exception of the Fz force component.
The reason is that the forces are mainly applied along the
surgical instrument shaft which is aligned with the z axis
of the force sensor. It is also observed that the estimated870

shape of Fz is fully retrieved, although its amplitude dif-
fers in some locations from the ground-truth signal. By
contrast, in Fig. 11b, the force and torque components
(estimated for pulling tasks) are non-zero, because of the
reaction forces applied to the surgical instrument when it875

is grasping a tissue. Nonetheless, these signals are more
difficult to learn in both amplitude and shape.

6.2. Ablation Study

The ablation study reveals that the force vectors esti-
mated by the RCNN, corresponding to case III-A, have880

higher quality than those estimated by the VGG16 net-
work alone. In particular, the mean absolute error (com-
puted with Equation (11), using force data samples nor-
malized in the range -7/+3), is 7.5× times lower for the
RCNN (∼ 0.237) than for the VGG16 network (∼ 1.780).885

This result suggests that the LSTM-CIFG network is an
essential component of the force estimation model, and
shows the importance of modeling the structure of data
over the temporal dimension.

6.3. Robustness of the RCNN Model890

The results of the robustness of the RCNN model
against noise, z ∼ N (0, σ2), added to normalized tool
data, φtoolt , are shown in Fig. 12. In this illustration, it can
be observed that the PCC and RMSE metrics are deterio-
rated by a small margin as the noise intensity is strength-895

ened (by increasing σ from 0.001 to 14). Nonetheless, this
effect is more noticeable in the metrics related to pushing
tasks than those of pulling. These results suggest that the
RCNN model is able to cope with tool data corrupted with
Gaussian noise, with zero mean and finite variance. Fur-900

thermore, they reveal that the estimation of interaction
forces heavily relies on the input video sequences.

The comparison of the RCNN performance by pre-
processing video sequences in offline and real-time modes
is summarized in Table 6. The metrics reported in this905

table correspond to a pair of video sequences in the test
set, and each video sequence is related to pushing and
pulling tasks. These metrics reveal a slight deterioration
of RCNN model performance in real-time mode (referred
to as RT) with respect to the offline mode (referred to as910

O). The percentage error (calculated with respect to the
offline mode and indicated with δp) emphasizes this result,
showing a small performance gap between the two modes.
Contrary to the intuition, few metrics seem to favor the
RCNN model operating in real-time mode, however, they915

do not represent the most important force components for
each surgical task. A possible explanation for this result
could be related to the amount of noise present in video
sequences after the pre-processing stage. That is, video se-
quences pre-processed in real-time mode are noisier than920

those pre-processed in offline mode. Such noise could be
beneficial for the RCNN while operating in real-time mode.

6.4. RCNN Model vs ARMAX Model

The ARMAX model and two variants of the RCNN, re-
ferred to as cases III-A (where both video sequences and925

tool data are processed) and I-B (in which only tool data
is processed), are contrasted in Table 7. Specifically, this
table shows the PCC and RMSE computed from the esti-
mated force signals (data in the test set), for each model
and surgical task (pushing and pulling). The PCC and930

RMSE values presented in this table reveal that the RCNN
model corresponding to case III-A, is a better choice than
the ARMAX model in the task of force estimation. On the
other hand, the ARMAX model outperforms the RCNN
corresponding to case I-B. This result highlights the im-935

portance of processing past information. That is, although
the ARMAX model (with 6144 parameters) has fewer pa-
rameters than the RCNN defined by case I-B (with 38662
parameters), the former model processes 256 input sam-
ples (at time steps t, t − 1, ..., t − 255) to render a single940

force estimate, while the later only has access to 64 input
samples (at time steps t, t−1, ..., t−63). Moreover, the ex-
perimental findings suggest that the information encoded
in the tool data is not enough to render accurate force
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Table 6: Comparison of the RCNN model performance in offline
(O) and real-time (RT) modes, using Pearson Correlation Coefficient
(PCC) and Root Mean Squared Error (RMSE). The percentage er-
ror, δp, shows the performance gap between the two modes.

Mode Fx Fy Fz Tx Ty Tz

Pushing Task

PCC

O 0.5816 0.4869 0.9286 0.5860 0.8643 0.2432

RT 0.5873 0.4546 0.8794 0.5480 0.8205 0.2611

δp 0.99% 6.64% 5.29% 6.49% 5.06% 7.34%

RMSE

O 0.1797 0.2182 0.4528 0.1103 0.1113 0.3874

RT 0.1817 0.2209 0.5918 0.1164 0.1260 0.3864

δp 1.14% 1.22% 30.69% 5.56% 13.27% 0.26%

Pulling Task

PCC

O 0.7134 0.6635 0.7070 0.6700 0.7214 0.5935

RT 0.6838 0.6845 0.6547 0.6654 0.7238 0.5637

δp 4.14% 3.16% 7.40% 0.69% 0.34% 5.03%

RMSE

O 0.3079 0.5915 0.3737 0.6435 0.3423 0.6555

RT 0.3217 0.5814 0.4009 0.6431 0.3489 0.6691

δp 4.48% 1.70% 7.30% 0.07% 1.92% 2.07%

O (RT): Metric computed in offline (real-time) mode with respect
to the ground-truth force data.
δp: Percentage error, computed by taking values in offline mode as
a reference, i.e. δp = (|RT −O|/O)× 100%.

Table 7: Comparison of the RCNN (cases III-A and I-B) vs ARMAX
model using the Pearson Correlation Coefficient (PCC) and Root
Mean Squared Error (RMSE) as performance metrics.

Model Fx Fy Fz Tx Ty Tz

Pushing Task

PCC

RCNN(1) 0.5864 0.4537 0.8957 0.4246 0.6520 0.2674

RCNN(2) 0.1169 0.0479 0.3655 0.0551 0.0406 0.1317

ARMAX 0.2705 0.2254 0.6499 0.0909 0.2468 0.1974

RMSE

RCNN(1) 0.2603 0.3025 0.4567 0.1598 0.2366 0.4072

RCNN(2) 0.4181 0.5407 1.3149 0.2785 0.3520 0.4992

ARMAX 0.3040 0.3361 0.7462 0.2249 0.2900 0.4288

Pulling Task

PCC

RCNN(1) 0.6917 0.5993 0.7164 0.5824 0.6530 0.5252

RCNN(2) 0.2720 0.1646 0.4901 -0.0241 0.1431 0.2935

ARMAX 0.5008 0.1639 0.7616 0.0486 0.1692 0.1268

RMSE

RCNN(1) 0.3199 0.6200 0.3669 0.6778 0.3698 0.6703

RCNN(2) 0.4349 0.7506 0.5060 0.8278 0.4928 0.7758

ARMAX 0.3980 0.7493 0.3784 0.8164 0.4789 0.7646
(1) Case III-A: Video sequences and tool data are processed as input.
(2) Case I-B: Only tool data is processed as input.

estimates, but it should be processed together with video945

sequences. In this context, the RCNN defined by case
III-A, stands out since it can process (high-dimensional)
data with both spatial and temporal components. On the
other hand, the ARMAX model is limited to process (low-
dimensional) temporal data.950

6.5. Requirements for Real Applications

For practical applications, there are four key features
of the RCNN model that should be improved. First, the
error reported in Table 5, can be reduced (to meet the de-
sign requirement of 0.1 N for forces) by taking into account955

the processing of depth information. This information can

help to improve the quality in the force estimates, similarly
in that the addition of tool data (i.e. the tool-tip trajectory
and its grasping status) helped to render force estimates
with better quality than processing only video sequences.960

For this purpose, a monocular depth estimation technique,
such as [53], can be used. Second, techniques for pre-
processing of video sequences were explored as a first ap-
proach to highlight motion due to tool-tissue interactions
and ease the learning process of the neural network model.965

However, an attention model, such as the one described
in [54], represents a suitable approach to automatically
learn those image regions that are relevant to the task of
interest (force estimation). Third, to circumvent the limi-
tation of processing low-resolution images (i.e. 224 × 224970

pixels) due to hardware constraints (i.e. the GPU mem-
ory), images with higher resolutions (i.e. 1024× 1024 pix-
els) can be processed in patches (i.e. 256 × 256 pixels),
as suggested in [55], in the task of image translation. Fi-
nally, the RCNN, consisting of the VGG16 network con-975

nected in series with the LSTM-CIFG network, results in
a model with many parameters, which is slow during both
training and inference stages. For real-time scenarios, a
compact model is needed, capable of rendering force es-
timates without loosing quality. To this end, techniques980

for compressing and accelerating deep neural networks can
be useful. For instance, parameter pruning and sharing,
low-rank factorization, transferred/compact convolutional
filters, and knowledge distillation [56].

7. Conclusions & Future Work985

A Recurrent Convolutional Neural Network (RCNN) for
Vision-Based Force Sensing (VBFS) in robotic surgery has
been developed. The proposed neural network was de-
signed to estimate forces from monocular video sequences,
as opposed to the majority of reported works, which rely990

on stereo vision. For this purpose, a pre-trained CNN
was used to learn a compact feature vector representa-
tion for each frame in a video sequence (φvideot ), which
encodes complex phenomena such as deformation of soft-
tissues and specular reflections. This representation to-995

gether with the tool data (φtoolt ), defined a new feature
vector space (i.e. by concatenating φvideot and φtoolt ), in-
creasing the quality in the force estimates. To enforce a
temporal constraint, the feature vector space was modeled
by an LSTM network. The proposed RCNN model rep-1000

resents an alternative to existing approaches and has the
potential to achieve better results in the future.

From this research work, several experimental findings
can be highlighted. First, the force estimation task is
achieved better when the CNN and LSTM networks are1005

optimized with a loss function that takes into account
the Root Mean Squared Error (RMSE) and Gradient Dif-
ference Loss (GDL). The intuition behind this loss func-
tion design is that continuous and time-varying signals can
be interpreted as composed of smooth and sharp details.1010

Therefore, the RMSE addresses the modeling of smooth
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(a) Pushing Tasks (b) Pulling Tasks

Figure 9: Force estimation quality measured with the Root Mean Squared Error (RMSE) and Pearson Correlation Coefficient (PCC) for
each surgical task, pushing (left column) and pulling (right column) tissue. The six cases studied (I-A, I-B, II-A, II-B, III-A, and III-B) are
contrasted in these plots. For the PCC, values closer to 1.0 are better, while for the RMSE values closer 0.0 are desirable. In this illustration,
case III-A (solid line in red color) stands out at the best model.

(a) Pushing Task (b) Pulling Task

Figure 10: Case III-A: Neural network output vs target plot (for all data in the test set) related to pushing (left column) and pulling tasks
(right column). The Pearson Correlation Coefficient (PCC) is shown for each force component as r. The best line that fits the data is shown
in magenta color. A perfect fitting to the data is represented by the dotted line in dark blue color. Data points with low and high error are
plotted in blue and red colors, respectively.
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(a) Pushing Task (b) Pulling Task

Figure 11: Case III-A: Sample of estimated interaction forces between tool and tissue (normalized in the range -7/+3) for pushing (left
column) and pulling tasks (right column).

(a) Pushing Tasks (b) Pulling Tasks

Figure 12: Case III-A: Deterioration of the RCNN model as noise, z ∼ N (0, σ2), is added to normalized tool data, φtoolt , with increased
strength (by varying the standard deviation, σ). The Pearson Correlation Coefficient (PCC) and Root Mean Squared Error (RMSE) metrics
(per force component) related to pushing and pulling tasks, are shown on the left and right columns, respectively.
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information found in force/torque signals (i.e. sine wave-
like signals), while the GDL promotes the modeling of
sharp details attributed to these signals (i.e. signal peaks).
However, other alternatives to the GDL may result in bet-1015

ter outcomes. For instance, the adversarial loss, which is
derived from the Generative Adversarial Network (GAN)
framework [57], has proven useful in the modeling of high-
frequency components found in images. This type of loss
can be adapted to the modeling of sharp details found in1020

force/torque signals. Second, both video sequences and
tool data, provide important cues for the estimation of
forces than using either source of information alone. Third,
this study shows that interaction forces resulting from
pushing tasks (characterized by smooth signals) are eas-1025

ier to model and estimate than those produced by pulling
tasks (characterized by irregular signals). Fourth, the ex-
periment related to the robustness of the RCNN against
Gaussian noise added to the tool data suggests that the
RCNN model is able to cope with this perturbation. Fur-1030

thermore, this experiment shows that the RCNN relies
heavily on video sequences to estimate interaction forces.
Fifth, regarding the pre-processing of video sequences in
real-time, this experiment shows that the RCNN model
performance is slightly degraded with respect to that rely-1035

ing on video sequences pre-processed offline. Finally, the
ARMAX model is unable to render accurate force esti-
mates by processing only tool data. The information en-
coded in video sequences is essential in the task of force
estimation. In this context, the RCNN stands out, since1040

it can process both video sequences and tool data, outper-
forming the accuracy of the ARMAX model.

The RCNN model presented in this work addresses a
special case of real surgical scenarios. The camera and
organs are static while the surgical instrument is in mo-1045

tion. The proposed RCNN model has been evaluated only
in static scenarios, using a dataset enriched with video
sequences recorded from different viewpoints. This allows
the neural network to learn the relation between tool-tissue
interactions and force under a variety of perspectives. A1050

real scenario is usually more dynamic, with the camera
moving automatically or at surgeon’s will. Moreover, the
organs may be affected by physiological motion due to
breathing and heart beating cycles. Another important
remark is that the RCNN model has been trained and val-1055

idated in a single dataset. Thus, a single validation dataset
was used, i.e. the test set, which only gives an estimate of
the risk [58]. A future version of this work will provide a
validation of the proposal in multiple and diverse datasets.
Moreover, cross-validation will be included as an estimate1060

of the model performance.
As future work, several research directions can be ex-

plored. Some of them have already been discussed in Sec-
tion 6.5. First, for real operational purposes, the force
estimation quality, shown in Table 5, could be improved1065

by taking into account depth information (i.e. using a tech-
nique, such as [53]). Second, a model designed in a semi-
supervised learning setting using an Auto-Encoder net-

work and GANs, represents a potential approach to find a
suitable feature vector representation from video sequences1070

when few data are available. Third, incorporating an at-
tention model [54], would allow automatically select those
regions in video sequences that contribute to the learn-
ing process (i.e. where tool-tissue interactions are present),
avoiding the need of applying pre-processing operations1075

(i.e. mean frame removal and space-time transformation).
Moreover, this attention mechanism would allow the ex-
tension of the neural network model to the estimation of
forces related to more complex surgical tasks than pushing
and pulling (i.e. suturing or knot-tying) and its applica-1080

tion to dynamic scenarios (i.e. by processing motion due
to uniquely tool-tissue interactions, while suppressing the
motion caused by the camera and organs). Fourth, images
with arbitrary resolutions can be processed in patches, as
suggested in [55]. This technique will be helpful in the pro-1085

cessing of high-resolution images, under specific hardware
constraints, such as the GPU memory. Fifth, the impact
of the receptive field of the CNN, used as a feature vector
extractor, will be studied. Specifically, a CNN with small
kernels (i.e. 3× 3), represents a suitable design choice for1090

estimating forces caused by pushing actions (due to the
localized area of the tool contacts in the image), whereas
a CNN with large kernels (i.e. 5 × 5), would be a better
design choice in the modeling of forces caused by pulling
actions (because the tool-tissue interactions appear dis-1095

tributed across the image). Sixth, techniques for com-
pressing and accelerating deep neural networks should be
investigated. They will help in designing a compact neural
network model suitable for real-time scenarios. Finally, a
better understanding of the RCNN model, e.g., by inter-1100

pretation of its predictions [59, 60], will certainly help in
designing more efficient RCNN architectures in the future.
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