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Multiple Kernel Learning for Object Classification
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Abstract: Combining information from various image descriptors has become a standard technique
for image classification tasks. Multiple kernel learning (MKL) approaches allow to determine the
optimal combination of such similarity matrices and the optimal classifier simultaneously. Most
MKL approaches employ an ℓ1-regularization on the mixing coefficients to promote sparse solu-
tions; an assumption that is often violated in image applications where descriptors hardly encode
orthogonal pieces of information. In this paper, we compare ℓ1-MKL with a recently developed
non-sparse MKL to object classification tasks. We show that the non-sparse MKL outperforms
both the standard MKL and SVMs with average kernel mixtures on the PASCAL VOC data sets.
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1 Introduction
Data fusion is an important topic in computer vision. Im-

ages can be represented by a multiplicity of features cap-
turing certain aspects, including color, textures, and shapes.
Unfortunately, the importance of different types of features
varies with the tasks; color information, for instance, sub-
stantially increases the detection of stop signs while color-
ing is almost irrelevant for finding cars in images. Tech-
niques for appropriately combining relevant features for a
task at hand are therefore crucial for state-of-the-art object
recognition systems.

From a machine learning view, different representations
give rise to different kernel functions. Kernels define (pos-
sibly nonlinear) similarities between data points and allow
to abstract learning algorithms from data. Thus, kernel ma-
chines have been successfully applied to many practical
problems in various fields [19]. Given a task at hand, de-
signing an appropriate kernel is essential for achieving good
generalizations, for instance by incorporating prior assump-
tions and domain knowledge [9, 28]. However, in the ab-
sence of prior knowledge one has to resort to alternatives.

For object recognition tasks, combining information from
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various image descriptors into several kernels K1, . . . ,Km

has become a standard technique. Unfortunately, the choice
of the right kernel mixture is often a matter of trial and er-
ror. As a remedy, uniform mixtures of normalized kernels
[14, 26] or brute-force approaches [2] are employed fre-
quently. However, the former approach may lead to sub-
optimal kernels and the latter is computationally infeasible
if many kernels are to be combined.

Recently, multiple kernel learning (MKL) [13, 1, 20, 18,
27] was applied to object classification tasks involving vari-
ous image descriptors [24]. Compared to uniform mixtures
and brute-force approaches, MKL has the appealing prop-
erty of always finding the optimal kernel combination and
converges quickly as it can be wrapped around a regular
support vector machine [20]. Multiple kernel learning aims
at learning the optimal kernel mixture and the model param-
eters simultaneously. More specifically, MKL approaches
find a linear mixture of the kernels, that is K =

∑
j βjKj .

To support the interpretability of the solution, many MKL
approaches promote sparse mixtures by incorporating an
ℓ1-norm constraint on the mixing coefficients. However, it
has often been observed that ℓ1-norm MKL is outperformed
by the average-sum kernel K =

∑
j Kj . An explanation is

that enforcing sparse mixtures may lead to degenerate mod-
els if the optimal kernel mixture is non-sparse. A remedy
might be recently developed non-sparse variants of multiple
kernel learning promoting non-sparse kernel mixtures [10].

In this contribution, we empirically compare sparse and



non-sparse MKL approaches to object classification tasks.
We employ candidate kernels obtained from many different
image descriptors including the 30 color SIFT features by
the VOC2008 winner [22]. Our empirical results on im-
age data sets from the PASCAL visual object classification
(VOC) challenge 2007 and 2008 [8] show that the non-
sparse MKL significantly outperforms the uniform mixture
and ℓ1-norm MKL.

This paper is organized as follows. In Section 2, we
briefly review the underlying techniques, including sparse
and non-sparse MKL. Section 3 discusses similarities be-
tween the prepared kernels. Based on this analysis, we pre-
compute averages of similar kernels and apply MKL with
a substantially reduced sets of kernels. We discuss our em-
pirical results in Section 4 and Section 5 concludes.

2 Preliminaries
2.1 Support Vector Machines

In the supervised learning setting, we are given n train-
ing samples {(xi, yi)}n

i=1, where xi ∈ X is the input vector
and yi ⊆ Y . For instance, in object recognition, inputs x

are frequently histograms of some image features and Y is
a discrete set of objects that are to be identified in the im-
ages. Inputs are often annotated with several labels as dif-
ferent objects can occur in the same image. To account for
these multi-label scenarios, we take a one-vs-all approach
and focus on binary classification settings. That is, we have
yi ∈ {+1,−1}, where yi = +1 denotes that at least one
object from the actual category is included in the image and
y = −1 otherwise.

Support vector machines originate from linear classifiers
and maximize the margin between sample clouds of both
classes. Introducing a feature mapping ψ from the input
space X to a reproducing kernel Hilbert space (RKHS) H,
linear classifiers in H of the form

f(x) = w⊤ψ(x) + b (1)

provide a rich set of flexible classifiers in X . The parame-
ters (w, b) are determined by solving the optimization prob-
lem

min
w,b,ξ

1
2
∥w∥2

2 + C

n∑
i=1

ξi, (2)

s.t. ∀i, yi

{
w⊤ψ(xi) + b

}
≥ 1 − ξi; ξi ≥ 0,

where ∥ · ∥2 denotes the ℓ2 norm and C > 0 is a regu-
larization constant. Notice that the spanned RKHS can be

infinite-dimensional, however, translating the above formu-
lation into the equivalent dual optimization problem pre-
vents from dealing with features in H explicitly.

min
α

n∑
i=1

αi −
1
2

n∑
i,l=1

αiαlyiylk(xi,xl) (3)

s.t. 0 ≤ αi ≤ C, ∀i;
n∑

i=1

yiαi = 0.

The above dual depends only on inner products (similari-
ties) of inputs which can be alternatively computed by means
of kernel functions k, given by

k(x, x̄) = 〈ψ(x), ψ(x̄).〉H.

Once, optimal parameters are found, these are used as plug-
in estimates and the final decision function can be written
as

f(x) =
n∑

i=1

αik(xi, x) + b.

Note that only a small fraction of the α’s usually take non-
zero values which are often called support vectors. The
threshold b is determined by saturated support vectors with
α = C. Finally, we remark that we need to use different
regularization constants C+ and C− for the positive and
negative examples, respectively, to compensate the unbal-
anced sample sizes of the two classes [3].

2.2 Multiple Kernel Learning
Let K1, . . . ,Km be m kernel matrices with Kt =

[kt(xi, xj)]i,j=1,...,n, obtained from different sources or fea-
tures. The multiple kernel learning framework extends the
regular SVM formulation by additionally learning a linear
mixture of the kernels, i.e.

Kβ =
m∑

j=1

βjKj .

Thus, the model in Equation (1) is extended to

f(x) =
m∑

j=1

βjw
⊤
j ψj(x) + b.

A common approach is to rephrase the above expression
by incorporating the mixing coefficients into the parame-
ter vector wβ = (

√
β1w1, . . . ,

√
βmwm)⊤ and the feature

mapping ψβ(xi) = (
√

β1ψ1(xi), . . . ,
√

βmψm(xi))⊤. The
corresponding optimization problem maximizes the gener-
alization performance by simultaneously optimizing the pa-
rameters w, b, ξ, and β. We obtain the common ℓ1-norm



MKL for p = 1 [1, 20, 18, 27], and non-sparse MKL for
p > 1 [10].

min
β,w,b,ξ

1
2
∥wβ∥2

2 + C
n∑

i=1

ξi

s.t. ∀i : yi (〈wβ, ψβ(xi)〉 + b) ≥ 1 − ξi (4)

ξ ≥ 0; β ≥ 0; ∥β∥p ≤ 1

Note that we resolve the regular SVM optimization prob-
lem in Equation (2) for learning with only a single kernel
m = 1. Irrespectively of the actual value of p, the above
optimization problem can be translated into a semi-infinite
program [20, 10] which can be interpreted as a dualized
variant of the optimization problem (4). We arrive at,

min
λ,β

λ

s.t. λ ≥
n∑

i=1

αi −
1
2

n∑
i,l=1

αiαlyiyl

m∑
j=1

βjkj(xi, xl), (5)

∀α ∈ Rn (6)

0 ≤ αi ≤ C, ∀i;
n∑

i=1

yiαi = 0;

βj ≥ 0, ∀j; ∥β∥p ≤ 1

Initializing β with a uniform kernel mixture, the semi-infinite
program can be optimized efficiently by interleaving the
following two steps:

1. For the actual mixture β, the solution of the regular
SVM generates the most strongly violated constraint
(Equation (6)).

2. With respect to set of active constraints, the optimal
values of β and λ are identified by solving the corre-
sponding optimization problem for β.

The actual optimization problems for the mixing coef-
ficients, however, differ with varying values of p. For in-
stance, for p = 1, one obtains a linear program that can be
solved with standard techniques. For p = 2, the ℓ2-norm
gives rise to a QCQP that can also be optimized with off-
the-shelf QP-solvers. For different values of p, things get a
bit tricky because there is hardly an ℓp-norm solver. Nev-
ertheless, one can approximate the ℓp-norm constraint by a
second-order Taylor expansion around the current estimates

βold given by

∥β∥p
p ≈ 1 − p(3 − p)

2
− (p2 − 2p)

∑
j

(βold
j )p−1βj

+
p(p − 1)

2

∑
j

(βold
j )p−2β2

j .

Using the above approximation, one obtain a QCQP, which
can again be optimized with standard techniques [10].

2.3 Kernel Alignment
In the remainder, we will need to analyze the similarity of

kernel matrices. For this purpose, we now introduce kernel
target alignment [5] as an adequate measure of similarity or
hyper kernel [17].

Let K1 = [k1(xi,xj)]i,j=1,...,n and
K2 = [k2(xi, xj)]i,j=1,...,n be the Gram matrices of kernel
functions k1 and k2 for x1, . . . , xn. The alignment between
k1 and k2 is defined as the cosine of the angle between the
two matrices K1 and K2 given by

A(K1,K2) :=
〈K1,K2〉F

∥K1∥F ∥K2∥F
, (7)

where 〈K1,K2〉F denotes the standard inner product
〈K1,K2〉F :=

∑n
i,j=1 k1(xi,xj)k2(xi, xj) and ∥K1∥F is

the Frobenius norm in matrix space defined as ∥K1∥F :=
〈K1,K1〉1/2

F .
It is important to center the kernels before computing the

alignment as many classifiers, including support vector ma-
chines, are invariant against mean shifts in the reproducing
kernel Hilbert spaces. The centering in the respective fea-
ture spaces is achieved by multiplying the matrix H , given
by

H := I − 1
n
11⊤

to the kernels K1 and K2 from both sides, where I is the
identity matrix of size n and 1 is a column vector with all
elements 1. Thus, the resulting alignment for centered ker-
nels can be computed by

A(HK1H,HK2H) =
〈HK1H,HK2H〉F

∥HK1H∥F ∥HK2H∥F
, (8)

where 〈HK1H,HK2H〉F = tr(HK1HK2), because H

is a projection matrix.

3 Experiments
3.1 VOC data sets

In order to show the advantage of our procedure, we com-
pare the performance of the different MKL procedures to
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図 1: Similarity between the 35 prepared kernels: (a) hyper kernel and (b) graphical representation of the similarities within
the first two eigen directions. In the panel (a), 6 groups are ’SIFT g1’, ’SIFT o’, ’SIFT no’, ’SIFT nrg’, ’SIFT rgb’, and
’PHoG’, while 6 elements within SIFT color channel consists of 3 pyramid levels (level 0, 1, y3) for dense grid and interest
points. In the panel (b), the color channels are specified as black=’g1’, red=’o’, magenda=’no’, green=’nrg’ and blue=’rgb’,
while the markers discriminates the pyramid levels and sampling scheme for SIFT plus PHoG (triangle), i.e. circle=’dense
level0’, square=’dense level1’, diamond=’dense y3’, plus=’interest level0’, X-mark=’interest points level1’, star=’interest
points y3’.

SVMs using the average-sum kernel. We experiment on the
VOC 2008 classification data set and the VOC 2007 data
set [8].

The VOC 2007 data set consists of 9963 images (2501
training, 2510 validation and 4952 test) annotated with 20
object classes. The VOC 2008 data set contains 8780 im-
ages categorized into the same 20 object classes as in the
VOC 2007 data. The latter is split into train, validation and
test sets by the organizers (2113 for train, 2227 for valida-
tion, and 4340 for test). The ground-truth of the test set is
yet disclosed by the organizers who agreed to evaluate test
performance on request.

We split the multi-label problem into 20 binary classifi-
cation problems using the one-vs-all strategy. That is, for
each class, we define an auxiliary label yi = +1 if at least
one object from the actual class is included in the i-th im-
age, and yi = −1 if there is no such object in the image.1

The evaluation is based on precision-recall (PR) curves and
the principal quantitative measure is the average precision
(AP) over all recall values.

We employ model selection for the SVM/MKL trade-off
parameter C and for the parameter p which controls the
sparseness of the multiple kernel learning. We used p =
1 + 2λ, where λ = {−∞,−5,−4,−3,−2,−1, 0, 1,∞}.

1Hardly detectable objects are indicated by yi = 0 by the organizers.
Since these are omitted in the final evaluation we simply excluded them
from the training process.

We resolve p = 1 for λ = −∞ and obtain the unweighted-
sum kernel for p = ∞. Furthermore, we denote ℓp-norm
MKL with p optimized jointly for all classes as ℓp-joint and
write ℓp-single for optimizing p for each class separately.

The final classifiers are obtained by re-training the re-
spective approaches on all available data (i.e., training and
holdout sets) using the previously determined optimal pa-
rameters. We report on average AP scores over 10 repe-
titions with different training, holdout, and test sets. The
baselines SVM and ℓ1-norm MKL are implemented using
the Shogun library [20].

3.2 Image Features and Base Kernels
In our experiments, we employed the following two sets

of image features. The first category contains 30 histograms
of visual words (HoW) representations [6] based on color
SIFT descriptors [15] which are almost the same as those
applied by the winner of VOC 2008 [22]. As sampling
schemes, we use a dense grid with 6 pitches and interest
points from gray-scale images by the scale invariant de-
tector [25]. For both cases, we calculated the base SIFT
descriptors in 10 color channels: g1 (grey), o1 (opponent

color 1), o2, no1 (normalized o1), no2, nr (normalized red),

ng (normalized green), r, g, b. For prototype calculation and
visual word assignment, the color SIFTs are combined into
the following 5 groups: g1, o=[o1,o2,g1], no=[no1,no2],



nrg=[nr,ng], rgb=[r,g,b]. For each case, we created 4000
visual words for the dense grid (800 for the interest points)
by using k-means clustering. 2 Finally, we also consider
three levels of the image pyramid representation [14]: for
each image, its visual words are summarized into histograms
for the whole image (level 0), for 4 quarter images (level 1)
and for 3 horizontal stripes (y3). In total, we prepared 5
(colors) ×2 (sampling) ×3 (pyramid levels) = 30 kernels.

The second category of our image features is the pyramid
histogram of oriented gradient (PHoG) [7, 2]. For each of
the 5 color channels, which are same as in the first category,
we compute the PHoG representations of level 2 where the
3 pyramid levels are merged by a default scheme without
any adaptation. In sum, we computed 5 PHoG kernels. We
used the χ2 kernel, which has proved to be a robust simi-
larity measure for bag of words histograms [26], where the
band-width is set to the mean χ2 distances between all pairs
of training samples [12].

Although our MKL implementations are throughout ef-
ficient, simply storing all 35 kernels exceeds 1.2GB. We
therefore pre-combine kernels based on a similarity analy-
sis using kernel target alignment [5] before applying mul-
tiple kernel learning. Figure 1 (a) shows the kernel align-
ment score (8) between the 30 SIFT + 5 PHoG kernels. We
can see: (i) the kernels within the same colors are mostly
similar, (ii) g1 and rgb kernels are also similar and (iii) the
PHoG and SIFT kernels are less similar. In order to as-
sure our findings, we plotted the kernels in a 2-dimensional
space spanned by the first and second eigenvectors of the
hyper kernel obtained by a principal component analysis
(PCA) and spectral clustering [16] (Figure. 1(b)). Based on
this similarity analysis, we averaged 6 SIFT kernels with
uniform weights within each color. By doing this, we re-
duced the number of base kernels to 10. We obtain 5 pre-
combined SIFT and 5 PHoG kernels which are plugged into
the multiple kernel learning.

3.3 Result 1: Significance Test for 10 Ran-
dom Splits of VOC 2008

Before we use the official VOC 2008 data split to com-
pare our outcomes to already published results in Section
3.4, we investigate statistical properties of the performances
of the different methods. We therefore draw 2111 training,
1111 validation, and 1110 test images randomly from the

2We use only 800 visual words for the interest points as about 1/5 of
the descriptors are extracted per image.

labeled pool (i.e., official training and holdout split). We
report on APs and standard deviations over 10 repetitions
with distinct training, holdout, test sets. To test on the sig-
nificance of the differences in performance, we conduct a
Wilcoxon signed-ranks test for each method and class and
additionally for the average AP over all classes. Table 1
shows the results.3

The methods whose performance are not significantly worse
than the best score are marked in bold face. The ℓp-single
MKL is always among the best performing algorithms. Its
jointly-optimized counterpart ℓp-joint, performs similarly
and attains the second best performance. Uniform weights
and ℓ1-MKL are significantly outperformed by the two non-
sparse MKL variants for several object classes. The result
is however not really surprising as ℓp-single is optimized
class-wise.

Figure 2 shows the resulting kernel weights, averaged
over the 10 repetitions. We see that the solutions of ℓp-
joint distribute some weight on each kernel, achieving non-
sparse solutions. The average p for ℓp-joint is 1.075. Fur-
thermore, Figure 2 implies that PHoW features carry more
relevant information than PHoG. Since the PHoG features
do not seem to play a great role in the classification, a natu-
ral question is whether PHoG do contribute to the accuracy
at all. Table 2 shows the average gain in accuracy for using
PHoW kernels alone and PHoG & PHoW kernels together,
respectively. The result shows that the PHoG kernels abso-
lutely contribute to the final decision. We observe a signif-
icant gain in accuracy by incorporating PHoG kernels into
the learning process for all but the average-sum kernel.

表 2: Average gain in accuracy by adding PHoG features.

uniform ℓ1 ℓp-joint ℓp-single
PHoW 45.4±1.0 45.6±0.8 45.5±0.8 45.5±1.0

PHoW&G 45.2±1.0 46.6±0.9 46.9±1.0 46.9±1.0

3.4 Result 2: Results for the Official Splits of
VOC 2007 and VOC 2008

In our second experimental setup, we evaluated the per-
formance of the approaches for the official splits of the
VOC 2007 and 2008 challenges. The winners of VOC2008

3Since creating a codebook and assigning descriptors to visual words
is computationally demanding, we apply the codebook created with the
training images of the official split. This could result in slightly better
absolute test errors, since some information of the test images might be
contained in the codebook. However, our focus in this Section lies on
a relative comparison between different classification methods, and this
computational shortcut does not favor any of these approaches.



表 1: Average precisions on the test images of our 10 splits. For each column, the best method and comparable ones based
on a Wilcoxon signed-rank test at the significance level of 5% are marked in bold faces.

average aeroplane bicycle bird boat bottle bus
uniform 45.2±1.0 70.4±5.3 42.5±3.6 47.8±6.0 61.2±4.6 22.5±5.7 50.5±10.8

ℓ1 46.6±0.9 72.8±4.7 44.5±5.8 49.3±5.4 61.3±4.3 20.5±4.0 51.5±10.0
ℓp-joint 46.9±1.0 72.6±5.0 45.1±5.0 49.7±5.4 61.9±4.4 22.1±4.7 50.5±11.2
ℓp-single 46.9±1.0 71.2±4.9 44.0±4.9 49.0±5.9 61.7±4.0 22.5±5.2 52.3±9.3

car cat chair cow diningtable dog
uniform 53.0±3.4 52.6±3.0 42.8±3.6 13.8±3.8 33.1±9.4 36.1±3.0

ℓ1 54.0±3.5 55.3±2.6 45.9±4.4 13.8±4.4 36.7±5.1 38.5±4.8
ℓp-joint 54.7±3.5 55.7±2.5 44.9±4.7 13.7±4.2 37.8±5.5 38.3±4.5
ℓp-single 54.4±3.1 55.7±2.6 45.6±4.1 13.7±3.5 37.2±5.0 38.8±3.4

horse motorbike person pottedplant sheep sofa
uniform 48.2±8.3 44.5±6.5 85.8±1.0 22.2±3.7 23.7±6.6 39.6±7.4

ℓ1 47.1±7.9 47.5±4.8 86.7±1.0 23.2±5.1 26.6±8.6 39.5±8.5
ℓp-joint 48.0±8.0 48.0±5.8 86.8±1.0 24.8±6.3 25.9±9.3 40.6±9.0
ℓp-single 49.3±8.2 47.6±4.9 86.8±1.0 24.9±6.1 24.7±6.8 40.6±9.0

train tvmonitor
uniform 60.4±8.6 53.4±5.9

ℓ1 60.8±8.9 57.0±5.6
ℓp-joint 61.6±8.2 56.2±6.4
ℓp-single 61.1±8.7 56.0±7.3
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図 2: Selected weights by multiple kernel learning: ℓ1 (left) and ℓp-joint (right)

[21] reported an average AP of 60.5 on VOC 2007 and
achieved an AP of 54.9 on VOC2008. Their result is based
on color descriptors [22], kernel codebook [23], and kernel
discriminant analysis [4].

Table 3 shows the resulting average APs for our multi-
ple kernel learning approaches.4 The non-sparse MKL in-
creases the accuracy of the basic color descriptors (uniform
only PHoW) of about 2%. Furthermore, [21] reports a loss
in accuracy of less than 1% if a support vector machine
is substituted for the kernel discriminant analysis. Taking
the different code books into account, we conjecture that
– except for the code book – non-sparse multiple kernel

4APs for VOC2008 have been kindly evaluated by the organizers.

learning is on par or better as the winner of last years VOC
challenge. We will address the validity of our assumption
in future work.

表 3: Average APs for VOC 2007/2008 using official splits.

VOC2007 VOC2008
uniform (only PHoW) 55.0 49.0

uniform 55.0 —
ℓ1 56.8 —

ℓp-joint 57.3 51.5
ℓp-single 57.1 50.9



4 Discussion
In contrast to anecdotal reports, we observed ℓ1-MKL to

outperform the average-sum kernel for PHoW and PHoG
kernels (see Table 1). Nevertheless, carefully adjusting the
norm p for boosts the performance of non-sparse MKL which
performed best throughout all our experiments. The opti-
mal choice of the norm p thereby depends on the actual set
of kernels. As a rule of thumb, large values of p work out
in cases where all kernels encode a similar amount of in-
dependent information while smaller values of p are best if
some kernels are less informative or redundant.

As an illustrative example, consider a simple experimen-
tal setup where we deployed MKL together with the fol-
lowing 12 kernels: level-2 PHoW with grey and hue chan-
nels with 10 pixels pitch dense grid and 1200 vocabulary
(3 pyramid levels × 2 colors), PHoG of grey channel (3
pyramid levels), and the pyramid histograms of intensity
with hue channel (3 pyramid levels). Table 4 shows the re-
sults. The sparse ℓ1-MKL yields a similar accuracy as the
average-sum kernel. As suspected, both approaches are sig-
nificantly outperformed by non-sparse MKL.

表 4: A simple case where the performance of ℓ1-norm
MKL deteriorates.

uniform ℓ1 ℓp-joint ℓp-single
mean AP 40.8±1.0 40.8±0.9 42.6±0.7 42.3±0.9

5 Conclusions
When measuring data with different measuring devices,

it is always a challenge to combine the respective device
uncertainties in order to fuse all available sensor informa-
tion optimally. In this paper, we revisited this important
topic and discussed machine learning approaches to adap-
tively combine different image descriptors in a systematic
and theoretically well founded manner. While MKL ap-
proaches in principle solve this problem, it has been ob-
served that the standard ℓ1-norm based MKL can rarely
outperform SVMs that use an average of a large number
of kernels. One hypothesis why this seemingly unintuitive
results may occur, is that the sparsity prior may not be ap-
propriate in many real world problems. A close inspection
reveals that most kernels contain useful structural informa-
tion and should therefore not be omitted. A slightly less
severe method of sparsification is to use another norm for
optimization, namely the ℓp-norm. We tested whether this

hypothesis holds true for computer vision and applied the
recently developed non-sparse ℓp-norm MKL algorithms to
object classification tasks. By choosing p as a hyperparam-
eter which controls the degree of non-sparsity from a set
of candidate values with the help of a validation data, we
showed that ℓp-MKL significantly improves SVMs with av-
eraged kernels and the standard sparse ℓ1-norm MKL. Sim-
ilar accuracy gain has been observed by controlling p in
one-class MKL [11].

Future work will incorporate further modeling ideas of
the VOC 2008 winner, e.g. the kernel code book, which
we have so far not even employed. The test result with the
official splits shown in this paper implied that our method
is highly competitive to the winners solution. Furthermore,
a combination of mid-level features by MKL will be an in-
teresting research direction.

参考文献
[1] F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel

learning, conic duality, and the smo algorithm. Inter-

national Conference on Machine Learning, 2004.

[2] Anna Bosch, Andrew Zisserman, and Xavier Muñoz.
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B. Schölkopf. Large scale multiple kernel learning.
Journal of Machine Learning Research, 7:1531–1565,
2006.

[21] M. Tahir, K. van de Sande, Jasper Ui-
jlings, Fei Yan, Xirong Li, Krystian Miko-
lajczyk, Josef Kittler, Theo Gevers, and
Arnold Smeulders. Surreyuva srkda method.
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/workshop/tahir.pdf.

[22] Koen E. A. van de Sande, Theo Gevers, and Cees
G. M. Snoek. Evaluation of color descriptors for ob-
ject and scene recognition. In IEEE Conference on

Computer Vision and Pattern Recognition, Anchor-
age, Alaska, USA, June 2008.

[23] J.C. van Gemert, J.M. Geusebroek, C.J. Veenman, and
A.W.M. Smeulders. Kernel codebooks for scene cat-
egorization. In ECCV, 2008.

[24] M. Varma and D. Ray. Learning the discriminative
power-invariance trade-off. In Proceedings of the

IEEE 11th International Conference on Computer Vi-

sion (ICCV ’07), pages 1–8, 2007.

[25] J. Zhang, M. Marszalek, S.Lazebnik, and C. Schmid.
Scale and affine invariant interest point detectors. In-

ternational Journal of Computer Vision, 60(1):63–86,
2004.

[26] J. Zhang, M. Marszalek, S.Lazebnik, and C. Schmid.
Local features and kernels for classification of texture
and object categories: A comprehensive study. Inter-

national Journal of Computer Vision, 73(2):213–238,
2007.

[27] Alexander Zien and C. Ong. Multiclass multiple ker-
nel learning. In ICML, pages 1191–1198, 2007.

[28] Alexander Zien, Gunnar Rätsch, Sebastian Mika,
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