
SAMEK ET AL. − DIVERGENCE-BASED FRAMEWORK FOR CSP ALGORITHMS 1

Divergence-based Framework for
Common Spatial Patterns Algorithms

Wojciech Samek, Member, IEEE, Motoaki Kawanabe and Klaus-Robert Müller, Member, IEEE,

Abstract—Controlling a device with a Brain-Computer In-
terface (BCI) requires extraction of relevant and robust fea-
tures from high-dimensional electroencephalographic recordings.
Spatial filtering is a crucial step in this feature extraction
process. This work reviews algorithms for spatial filter com-
putation and introduces a general framework for this task
based on divergence maximization. We show that the popular
Common Spatial Patterns (CSP) algorithm can be formulated
as a divergence maximization problem and computed within
our framework. Our approach easily permits enforcing different
invariances and utilizing information from other subjects, thus
it unifies many of the recently proposed CSP variants in a
principled manner. Furthermore it allows to design novel spatial
filtering algorithms by incorporating regularization schemes
into the optimization process or applying other divergences.
We evaluate the proposed approach using three regularization
schemes, investigate the advantages of beta divergence and show
that subject-independent feature spaces can be extracted by
jointly optimizing the divergence problems of multiple users. We
discuss the relations to several CSP variants and investigate the
advantages and limitations of our approach with simulations.
Finally we provide experimental results on a data set containing
recordings from 80 subjects and interpret the obtained patterns
from a neurophysiological perspective.

I. INTRODUCTION

BRain-Computer Interface (BCI) systems [1] [2] provide
a novel communication channel for healthy and disabled
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people to interact with the environment. The core idea of a
BCI is to decode the mental state of a subject from its brain
activity and to use this information for controlling a computer
application or a robotic device such as a wheelchair. There
are several ways to voluntarily induce different mental states,
one common approach is motor imagery. In this paradigm,
participants are asked to imagine the movements of their
hands, feet or mouths. This alters the rhythmic activity over
different locations in the sensorimotor cortex and can be
measured in the Electroencephalography (EEG). However,
reliable decoding of mental state is a very challenging task
as the recorded EEG signal contains contributions from both
task-related and task-unrelated processes. In order to enhance
the task-related neural activity, i.e. increase its signal-to-noise
ratio, it is common to perform spatial filtering. A very popular
method for this is Common Spatial Patterns (CSP) (e.g. [3]
[4] [5] [6] [7]). Spatial filters computed with CSP are well
suited to discriminate between different mental states induced
by motor imagery as they focus on the synchronization and
desynchronization effects occurring over different locations
of the sensorimotor cortex after performing motor imagery.
Although impressive improvements in BCI efficiency have
been achieved with CSP (see e.g. BCI Competitions1 [8] [9]
[10] [11]) the current BCI systems are far from being perfect
in terms of reliability and generalizability. This suboptimal
performance can be mainly attributed to a low signal-to-noise
ratio [12] [4] [13], the presence of artifacts in the data [14]
[15] [16] and the non-stationary nature of the EEG signal [17]
[18] [19].

Several extensions of vanilla CSP have been proposed to
increase the robustness and discriminativity of the extracted
features by applying regularization, incorporating data from
other sessions/subjects or using robust estimators (see Section
II for an overview). All these different algorithms were not de-
signed as part of a general robust approach to spatial filtering,
but rather each method was proposed for a specific application
scenario with its own optimization strategy. This diversity of
algorithms not only poses a practical implementation problem,
but the lack of flexibility of these methods may result in
suboptimal solutions (see Section V). In addition, they do not
optimize the same objective, consequently they can neither be
easily combined nor compared.

The main goal of this paper is to propose an unifying
optimization framework for spatial filter computation based
on divergence maximization. For that we first provide a novel
view on CSP, namely we prove that the CSP spatial filters

1http://www.bbci.de/competition/
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span a subspace with maximum symmetric Kullback-Leibler
divergence between the average class distributions. This rela-
tion permits reformulating CSP as divergence maximization
problem. Furthermore we propose to add different regular-
ization terms (measured as divergences) to the optimization
problem in order to increase the robustness and generalizabil-
ity of the extracted features. With this generic regularization
approach our framework unifies many of the state-of-the-
art CSP variants. The fact that all quantities used in the
optimization process are measured as divergences enables us to
easily combine and compare different regularization schemes.
Since divergences have a clear mathematical foundation and
can be interpreted from an information geometric perspective
[20] we can easily obtain meaningful CSP-like spatial filtering
algorithms with novel properties by using other divergences.
In this paper we will investigate the usage of beta divergence
(generalization of Kullback-Leibler divergence) within our
framework.

This paper is organized as follows. In the next section we
review the Common Spatial Patterns algorithm and its state-
of-the-art variants. In Section III we introduce the divergence-
based framework for spatial filter computation, we prove its
equivalence to CSP and discuss two optimization algorithms.
Section IV extends the divergence-based framework by in-
troducing different regularization terms and deriving a beta
divergence-based version of the algorithms. It also discusses
the relations to some of the published CSP variants. In
Section V we investigates the advantages and limitations of
our approach using simulations. The experimental evaluation
on a data set containing EEG recordings from 80 subjects is
presented in Section VI. This work concludes with a discussion
in Section VII. An implementation of our framework is
available at http://www.divergence-methods.org.

II. SPATIAL FILTERING ALGORITHMS

A. Why Spatial Filtering ?

In Electroencephalography (EEG) we record the electrical
activity on the scalp (e.g. [21] [22] [23]). The recorded signal
at an electrode does not only reflect neural voltage fluctuations
underneath that electrode, but it also captures the activity of
distance current sources through volume conduction effects.
Thus the EEG signal x(t) ∈ RD generated by the brain
sources s(t) ∈ RD is usually represented as a (noisy) linear
mixture [24]

x(t) = As(t) + n(t), (1)

where the matrix A ∈ RD×D maps the activity of each source
to the electrode space. Note that many blind source separation
algorithms (e.g. ICA) assume that the number of brain sources
and electrodes coincides. On the other hand inverse solution
algorithms (such as LAURA, ELECTRA, LORETA, etc.) often
rely on more realistic assumptions, namely that the number
of sources is much larger than the number of sensors [25].
These algorithms compute spatial filters trying to address the
volume conduction effect. Contributions not captured by A
are considered as normally distributed noise n(t).

The imagination of movement execution attenuates the sen-
sorimotor rhythms (SMRs) [22] in the corresponding cortical
areas. For instance, left hand motor imagery mainly affects
the SMRs over the right motor cortex. In order to distinguish
motor imagery tasks of different body parts it is necessary
to recognize the sources of SMR modulation. This is usually
achieved by spatial filtering

ŝ(t) = W>x(t), (2)

where W = [w1 . . .wd] ∈ RD×d projects the EEG signal to
a d-dimensional subspace. A spatial filter wi weights each
electrode to extract information about the true source of
interest s(t). Since changes in the SMR are visible in the
band-power of the signal (= variance of band-pass filtered
signals), one can enhance the SMR modulation by projecting
the data to a subspace with maximum band-power differences
between the motor imagery classes. This criterion reflects
the underlying physiology of event-related desynchronization
(ERD) / event-related synchronization (ERS) [22].

B. Common Spatial Patterns

The Common Spatial Patterns (CSP) method (e.g. [3] [4] [5]
[6] [7]) is probably the most popular algorithm for computing
spatial filters in motor imagery experiments. It is well suited to
discriminate different mental states induced by motor imagery
as it maximizes the band-power ratio between two motor
imagery classes. The spatial filters can be computed by solving
the generalized eigenvalue problem

Σ1wi = λiΣ2wi (3)

with Σ1 and Σ2 being the D × D-dimensional average co-
variance matrices estimated from two different motor imagery
classes. Note that the generalized eigenvalues λi measure the
variance ratio between class 1 and class 2. A large λi indicates
high variance of class 1 and low variance of class 2, a small λi
indicates the opposite. Since the goal is to extract a subspace
with large band-power differences between both conditions,
irrespectively whether the variance of class 1 or class 2 is high,
we sort the extracted spatial filters W = [w1 . . .wD] accord-
ing to their ability to capture these differences in decreasing
order α1 = max{λ1,

1
λ1
} > . . . > αD = max{λD, 1

λD
}.

C. Limits of standard CSP

The CSP method computes spatial filters in a naive data-
driven manner. This makes the algorithm vulnerable and may
produce suboptimal results, i.e. do not extract the true motor
imagery related activity, in certain situations.

One major source of errors results from the difficulty to
properly estimate the class covariance matrices. Since poorly
estimated covariance matrices do not well represent the under-
lying neural processes this will directly affect the spatial filter
computation (e.g. [26] [7] [27]). The increasing number of
electrodes used in BCI experiments further complicates the es-
timation problem. Thus if data is scarce it is almost impossible
to reliably estimate the high-dimensional covariance matrices
without prior information or regularization. Furthermore, the
covariance matrix estimation may be negatively affected by
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EEG artifacts like eye blinks or loose electrodes. These
artifacts often have much more signal power than BCI related
activity thus if not properly removed (e.g. [15] [3] [16]) they
may dominate the covariance matrix estimation and lead to
overfitted CSP solutions.

Another class of problems results from variations of the
extracted features. We call this the non-stationarity problem.
Note that we use the term non-stationarity to denote changes in
the feature distribution, irrespectively whether these changes
occur within an experimental session, between sessions or
between different subjects. In the following we comment on
these different types of non-stationarity.

Within-session changes in the signal are very common
and may occur on different time scales [18]. For instance,
artifacts like loose electrodes, muscle movements, blinking,
swallowing, teeth crunching or sudden shifts of attention
usually affect one or few trials whereas effects of tiredness,
changes in impedance of the electrodes or learning effects are
only visible on larger time scales. Note that these changes
may not only corrupt the covariance estimation but also lead
to overfitted CSP solutions and increase the variability of the
extracted features (c.f. [18] [19] [28]). Since many of these
changes can not be avoided, the application of robust algorithm
becomes crucial for successful BCI operation.

Between-session non-stationarity can be often observed in
BCI experiments (c.f. [17] [29] [30]). There are several reasons
why data recorded in one session is different from data
recorded in another session (which may be on a different
day), e.g. the calibration of the system may be different, the
state of mind of the subject may differ and the position of the
electrodes may not be exactly the same. Furthermore we often
observe significant changes when moving from calibration
phase to feedback application [17]. These changes may be
due to addition processing induced by the visual or auditory
feedback which is often lacking when calibrating the system.
Users may also change the strategy to control the BCI when
knowing the result of the classification. Another scenario
where CSP may produce suboptimal results is when it focuses
on discriminative but not motor imagery related activity. For
instance assume we use a visual cue (arrow pointing to the
left or right) in the training phase to indicate the motor
imagery class. A subject may involuntarily perform tiny eye
movements when observing the cue, i.e. move the eyes to the
direction of the arrow. These ocular movements can induce
task-related activity that will be captured by the CSP spatial
filters. However, this activity is not related to motor imagery
thus it becomes meaningless and may deteriorate classification
performance if the cue is lacking in subsequent sessions [31].

Finally non-stationarity can also be defined in terms of
differences between subjects (we should rather use “hetero-
geneity” though). This kind of variations may be not relevant
when training a single-subject system, but certainly play a role
when aiming for user-independent BCIs or shorter calibration
times [32]. Several authors also proposed to utilize other
subjects’ data to improve the spatial filter computation when
calibration data is scarce (e.g. [33] [34]). Differences in
the signal distribution of different subjects may have many
reasons. They may be due to differences in the electrode

positions or the user’s state of mind, but also anatomical
differences, e.g. size of the head, may play a significant role.
It is usually advisable to weight the contributions from other
subjects according to their relevance (c.f. [35] [34]).

D. State-of-the-Art CSP Variants

In this subsection we review some of the recently proposed
spatial filter computation algorithms. Note that we mainly
focus on CSP-like methods and do not include spatio-spectral
algorithms like CSSP [36] or adaptation strategies like
[17] [37]. Furthermore we ignore the BCI-related work on
artifact identification and removal e.g. by using Independent
Component Analysis. Figure 1 gives an overview over the
presented CSP variants.

Robust Estimation
Several strategies have been proposed to improve the
estimation of the covariance matrix when applying CSP. For
instance, the authors of [27] and [38] robustly estimate the
covariance matrices by using M-estimators. Regularization
of the covariance matrix e.g. [26] [35] [39] [7] is also
one common approach to increase robustness, especially in
small-sample settings. Other authors [40] [41] [42] propose
to improve the CSP solution by performing channel selection
or enforcing sparsity on the spatial filters. The idea of
computing spatial filters in a region of interest was used in
[43] [44] [45]. The authors of [46] [28] propose a maxmin
approach to robustify the CSP algorithm. Many other variants
of the algorithm use some kind of regularization in order
to incorporate a priori information [47], avoid overfitting
[7] or reduce ocular artifacts [48]. Other methods robustify
the variance estimation in CSP by applying Lp-norms [49]
[50]. A generative CSP model using the robust Student-t
distribution was proposed in [51]. The authors of [16] apply
trial pruning in order to separate signal from noise and [5]
discusses several methods for minimum noise estimation. A
novel robust CSP algorithm based on beta divergence was
proposed in [52].

Stationary Features
Recently, the development of methods compensating for
non-stationarities has gained increased attention in many
application fields of machine learning including Brain-
Computer Interfacing (see e.g. [53] [54]). The stationary
CSP approach [18] regularizes the CSP solution towards
stationarity in a data-driven manner. The authors of [19]
use the same idea but apply Kullback-Leibler divergence to
measure the changes in the data. Two-step approaches [55]
[56] [57] have also been suggested for computing stationary
features. They first estimate and remove the non-stationary
contributions and apply CSP to the remaining part of the data
in a second step. Furthermore a second-order baseline was
used [58] to robustify the algorithm against time and subject
related variations. Robust feature extraction methods have
been proposed for reducing between-session non-stationarities
(e.g. [31] [30] [59]). Some approaches [32] [29] [60] utilize
data collected in previous sessions for this task, others [61]
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update the trained model using adaptation.

Multi-Subject Methods
Many recent algorithms improve the CSP solution by
incorporating data from other subjects. Such approaches are
especially important when aiming for a subject independent
BCI system or reducing the calibration time of the system.
The authors of [34] jointly train the spatial filters of several
subjects by applying a multi-task learning algorithm. A
Bayesian method for subject-to-subject information transfer
has been proposed in [62]. Data from other users have also
been used as regularization target by [33] and [35]. A recently
proposed method [63] incorporates information from other
subjects by applying Multiple Kernel Learning.

Other approaches
Some CSP variants improve the quality of the solution
by explicitly considering the temporally local structure
of observed samples [64] [65] [66]. Other algorithms
were specifically designed for multi-class problems and
optimize the solution by using information theory [67], joint
approximate diagonalization [68] [69] or Kullback-Leibler
Divergence [70]. Recently, a spatial filtering method directly
linking to Bayes classification error was proposed in [71].
A Wavelet CSP method for asynchronous BCI systems was
proposed in [72] whereas the authors of [73] improve the
discriminative capability of CSP by taking into account both
the amplitude and phase components of the EEG signal. A
CSP variant directly optimizing the discriminativity of the
features was proposed in [74]. A recently proposed approach
[75] learns spatial filters by considering signal propagation
and volume conduction effects.

Note that many existing methods try to improve the
classification step rather than the CSP computation.
For instance, the method presented in [76] incorporates
information from other subjects by applying multi-task
learning whereas the authors of [77] [78] propose different
adaptation strategies to cope with non-stationarity. Some
authors omit the CSP computation step and suggest to jointly
perform feature extraction and classification (e.g. [79] [80]).
Other approaches [81] [82] omit spatial filtering by directly
performing classification on the manifold of covariance
matrices.

III. CSP AS DIVERGENCE MAXIMIZATION PROBLEM

This section introduces the divergence-based framework
(divCSP) for computing spatial filters. Note that we extend
our previous contribution [52] in several ways. First, we
introduce and compare two different optimization algorithms
for divCSP, a subspace approach that optimizes the objective
function in the whole subspace and a deflation method that
applies optimization in a sequential manner. Furthermore we
propose three different regularization schemes for tackling the
non-stationarity problems in BCI, moreover, we also show
that subject-independent spatial filters can be extracted with
our method by jointly optimizing the divergence problems
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Fig. 1. Overview over different state-of-the-art CSP variants.

of multiple users. Finally we discuss the effects of using
beta divergence in our optimization framework and relate the
proposed methods to state-of-the-art algorithms.

A. Divergence-Based Framework

Many machine learning algorithms, e.g. Independent Com-
ponent Analysis [83] or Stationary Subspace Analysis [84],
can be cast into the framework of information geometry [85]
and formulated as divergence optimization problems. In our
previous conference paper [52] we showed that the Common
Spatial Patterns (CSP) algorithm can also be interpreted from
this perspective, in particular we showed that the subspace
extracted by CSP maximizes the symmetric Kullback-Leibler
(KL) divergence between the distributions of both classes.
Note that the symmetric Kullback-Leibler Divergence D̃kl

between distributions f(x) and g(x) is defined as∫
f(x) log

f(x)

g(x)
dx +

∫
g(x) log

g(x)

f(x)
dx. (4)

It can be interpreted as distortion measure between two proba-
bility distributions, thus it is always positive and equals zero if
and only if g = f . Note that in this paper we always compute
divergences between zero mean Gaussian distributions. The
following relation exists between the spatial filters extracted
by CSP and the symmetric Kullback-Leibler divergence.

Theorem: Let W ∈ RD×d be the top d (sorted by αi) spatial
filters computed by CSP and let V> = R̃P ∈ Rd×D be a
matrix that can be decomposed into a whitening projection
P ∈ RD×D with (P(Σ1+Σ2)P> = I) and an orthogonal pro-
jection R̃ = IdR ∈ Rd×D with Id ∈ Rd×D being the identity
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matrix truncated to the first d rows and R>R = I ∈ RD×D.
Then

span(W) = span(V∗) (5)
with V∗ = argmax

V

D̃kl

(
V>Σ1V || V>Σ2V

)
(6)

Here span(M) means the subspace spanned by the columns
of the matrix M.

Proof: See Appendix.

The theorem says that the CSP filters W project the
data to a subspace with maximum discrepancy, measured
by symmetric Kullback-Leibler divergence, between the d-
dimensional Gaussian distributions N (0,W>Σ1W) and
N (0,W>Σ2W). Thus instead of computing spatial filters
with CSP we obtain an equivalent solution (up to linear trans-
formations within the subspace) when maximizing Eq. (6).
Note that [70] has provided a proof for the special case of
one spatial filter, i.e. for V ∈ RD×1. In the following we
present two approaches for divergence maximization, namely
the subspace method and the deflation algorithm. Note that
our optimization framework is based on the work [86] [87]
[57].

B. Optimization Algorithms

Subspace Method
Let us first describe the subspace approach (see Algorithm
1). The first step of the method consists of the computation
of a whitening matrix P ∈ RD×D that projects the data onto
the unit sphere, i.e. P(Σ1 + Σ2)P> = I. This whitening
transformation is applied to the class covariance matrices Σ1

and Σ2 followed by a (random) rotation with R0 ∈ RD×D.
Note that the rotation matrix satisfies R>0 R0 = I where I
is the identity matrix. The optimization process then consists
of finding a rotation matrix R ∈ RD×D that maximizes the
symmetric KL divergence in the first d sources. More precisely
we optimize the following objective function

Lkl(R) = D̃kl

(
IdRΣ̃1R

>I>d || IdRΣ̃2R
>I>d

)
(7)

=
1

2
tr
(

(IdRΣ̃1R
>I>d )−1(IdRΣ̃2R

>I>d )

+ (IdRΣ̃2R
>I>d )−1(IdRΣ̃1R

>I>d )
)
− d,

where Σ̃1 and Σ̃2 denote the whitened covariance matrices
and Id ∈ Rd×D is the identity matrix truncated to the first d
rows. Note that although R is a D × D rotation matrix, we
only evaluate the first d rows of it, i.e. we only evaluate the
divergence in a d-dimensional subspace.

The optimization is performed by gradient descend on
the manifold of orthogonal matrices. More precisely, we
start with an orthogonal matrix R0 and find an orthogonal
update U in the k-th step such that Rk+1 = URk. This
ensures that we stay on the manifold of orthogonal matrices
at each step. Note that the update matrix can be written as a
matrix exponential of a skew-symmetric matrix M = −M>.
We find a search direction H = −H> in the set of skew
symmetric matrices by computing the gradient of the loss

function w.r.t. M at M = 0 and determine the optimal step
size t along this gradient by line search (see [88] and [87] for
details). Finally we represent the update matrix as U = etH.
Since the objective function in Eq. (7) is invariant to rotations
within the d-dimensional subspace2, we rotate the projection
matrix V in the last step of the algorithm with a matrix G,
so that it maximally separates the classes along the projection
directions (as is the case with CSP). The spatial filters can
be rearranged so that they capture the class differences with
decreasing strength (αi sorting).

Algorithm 1 Subspace divCSP
1: function SUB-DIVCSP(Σ1,Σ2, d)
2: Compute the whitening matrix P = (Σ1 + Σ2)−

1
2

3: Initialise R0 with a (random) rotation matrix
4: Whiten and rotate Σ{1/2} = (R0P)Σ{1/2}(R0P)>

5: repeat
6: Compute the gradient matrix
7: Determine the optimal step size
8: Update the rotation matrix Rk+1 = URk

9: Apply the rotation to data Σ{1/2} = UΣ{1/2}U
>

10: until convergence
11: Let V> = IdRk+1P
12: Compute the eigenvectors G ∈ Rd×d of V>Σ1V
13: Let V∗ = VG and rearrange filters (αi sorting)
14: return V∗

15: end function

Deflation Method
A further interesting algorithm is the deflation method. It does
not extract the whole subspace at once, but performs the op-
timization in a sequential manner (see also deflation FastICA
[89]). More precisely, the algorithm reduces the dimensionality
of the data space by one in each step. This provides a sorting
of the spatial filters that is analogous to CSP, i.e. the first
solution is the most discriminative one and so on. The different
steps of the method are described in Algorithm 2. In the first
steps of the algorithm we apply the whitening transformation
P to the class covariance matrices and initialize a matrix B
that represents the basis of the subspace in which the spatial
filters are computed. Then we repeat the following procedure
d times. We calculate the best spatial filter by applying the
subspace divCSP algorithm described in Algorithm 1 with
parameter d = 1. Note that we skip the whitening step as it
has already been performed. After obtaining the spatial filter
w we compute its corresponding orthogonal complement and
project the class covariance matrices to this subspace. This step
ensures that the spatial filters computed in subsequent steps
will be orthogonal to the current ones. Since the i-th spatial
filter w has been computed in the subspace with basis B its
representation in the original coordinate system is vi = Bw.
In the last step of the loop we update the basis matrix B. The
final solution consists of the spatial filters vi with i = 1 . . . d
and is already sorted according to αi.

2D̃kl (C1 || C2) = D̃kl
(
G>C1G || G>C2G

)
for a square matrix

G with |G| 6= 0.
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The deflation algorithm optimizes the following objective
function in the i-th step

D̃kl

(
w>i Σ̃1wi || w>i Σ̃2wi

)
=

w>i Σ̃1wi

w>i Σ̃2wi

+
w>i Σ̃2wi

w>i Σ̃1wi

(8)

s.t. w>i wj = 0 ∀j ∈ 1 . . . i− 1. (9)

Note that this objective function can be written as f(z) = z+ 1
z

with z =
w>i Σ̃1wi
w>i Σ̃2wi

and one can prove easily that this function
is maximized at the border. Thus it is maximized either for
the largest z or for the smallest one (largest 1

z
). This solution

corresponds to the i-th CSP spatial filter (sorted by αi). Thus
both methods, subspace and deflation, provide the same spatial
filters, namely the CSP ones, when applied to the objective
function of divCSP (see Eq. (6)). However, when applied to
the regularized version of divCSP (described in next section)
the solution of the subspace and deflation method will not
necessarily coincide. This is because the objective function
consists of a sum of divergences and only the subspace method
considers (changes in) correlations between sources extracted
by different spatial filters3. We discuss this difference between
both optimization schemes in Section V using simulations.

Algorithm 2 Deflation divCSP
1: function DEF-DIVCSP(Σ1,Σ2, d)
2: Compute the whitening matrix P = (Σ1 + Σ2)−

1
2

3: Apply whitening Σ̃{1/2} = PΣ{1/2}P
>

4: Initialize basis B = I ∈ RD×D
5: for i=1. . . d do
6: Compute w ∈ R(D−i+1)×1 by sub-divCSP
7: Compute W⊥ ∈ R(D−i+1)×(D−i) the orthogonal

complement of w
8: Project Σ̃1 and Σ̃2 to subspace by W⊥

9: Reproject w to original space by vi = Bw
10: Update basis B = BW⊥ ∈ RD×(D−i)

11: end for
12: Let V∗ = P[v1 . . .vd]
13: return V∗

14: end function

IV. UNIFYING CSP FRAMEWORK

In this section we extend divCSP by adding different
regularization schemes to the objective function. Furthermore
we introduce the beta divergence variant of the algorithm.
Finally we show that our novel framework unifies many of the
state-of-the-art CSP variants in a principled manner. Figure 2
gives an overview over different application scenarios of our
framework.

A. Invariance Through Regularization

Above we proved that CSP can be formulated in a di-
vergence maximization framework, however, maximizing the

3Note that due to whitening there is no correlation between the sources
when only considering the divergence between the average class covariance
matrices.

band power ratios may not be the only objective for feature
extraction. For instance, imposing stationarity on the extracted
features is also of high interest in Brain-Computer Interfacing
(e.g. [18] [31] [19]). A natural way of regularizing the ex-
tracted spatial filters towards stationarity is to combine the
objective function of divCSP with a divergence term that
accounts for the stationarity of the features. We propose to
tackle the different non-stationarity problems by adding differ-
ent such regularization terms. Since the optimization process is
not affected by changing the way how stationarity is measured
(as long it is a divergence), our framework integrates several
stationary CSP variants and permits utilizing information from
other subjects.

The objective function of the proposed regularized divCSP
method can be written as

L(V) = (1− λ)D̃kl

(
V>Σ1V || V>Σ2V

)︸ ︷︷ ︸
CSP Term

− λ∆︸︷︷︸
Reg. Term

(10)

where ∆ is the regularization term that can be arbitrarily
defined, depending on the type of invariance that we want to
achieve, and λ is a regularization parameter trading-off the
influence of the CSP objective function and the regularization
term. Note that the objective functions of all algorithms
presented in this work can be written as weighted sum
of divergences and the goal is to find a projection to a
d-dimensional subspace that maximizes this sum. In the
following we will discuss four different regularization terms.

Within Session Stationarity (divCSP-WS): In order to re-
duce the influence of artifacts or shifts that are present in
the training data we divide the data into a set of smaller
epochs. The epochs consist of concatenated recordings of
one or several subsequent trials of the same class. The non-
stationarity of the extracted features is measured as average
divergence between the data distribution of the epochs and
the whole data distribution for each class separately (see [57]).
More precisely, we compute

∆ =
1

2N

2∑
c=1

N∑
i=1

Dkl

(
V>Σi

cV || V>ΣcV
)
, (11)

where N denotes the number of trials and Σi
c stands for the

estimated covariance matrix of class c and epoch i. Note
that we use the Kullback-Leibler divergence (and not its
symmetric version) for capturing the changes; the reasons for
that will be explained in Section V. Adding the regularization
term ∆ to Eq. (10) reduces the within-class variability of the
extracted training features.

Between Session Stationarity (divCSP-BS): The purpose of
the next regularization term is to reduce the shift between
the data distribution in calibration and feedback phase (e.g.
[17] [77]). Since we may assume that feedback data is not
available at the time of computing the spatial filters we utilize
information from other subjects to estimate these changes.
Note that this approach implicitly assumes that the between-
session non-stationarities are similar among different users,
e.g. because they are induced by the change in experimental
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paradigm (no feedback vs. visual feedback). It is based on the
recently proposed idea of transferring non-stationary informa-
tion between subjects [31]. For our experiments we consider
the following regularization term

∆ =
1

2K

2∑
c=1

K∑
k=1

D̃kl

(
V>Σk

tr,cV || V>Σk
te,cV

)
, (12)

where K stands for the number of other subjects and Σk
tr,c

and Σk
te,c denote the class covariance matrices estimated on

training and test data of subject k.

Across Subject Stationarity (divCSP-AS): If the goal is to
reduce differences between subjects, i.e. because one assumes
that the underlying processes governing motor imagery are
very similar between users, then one may use the changes
between the average data of the subject of interest ` and the
data of other subjects k as regularization term

∆ =
1

2K

2∑
c=1

K∑
k=1

D̃kl

(
V>Σ`

tr,cV || V>Σk
tr,cV

)
. (13)

Multi-Subject CSP (divCSP-MS): Instead of combining the
discriminativity term with a regularization term that captures
non-stationarity, we can also combine it with the divCSP
objective functions of other subjects. This permits extracting
a more subject-independent feature space. In this case we
need to invert the sign of ∆ as we aim to maximize this
regularization term

∆ = − 1

K

K∑
k=1

D̃kl

(
V>Σk

1V || V>Σk
2V
)
. (14)

Many other forms of regularization, e.g. considering multiple
classes or containing priori information, can be easily inte-
grated into our framework.

B. Robustness Through Beta Divergence

Once a divergence formulation is established it becomes
possible to define the same algorithm using other divergences
(cf. [52]). The application of beta divergence [90] [91], a
generalization of Kullback-Leibler divergence, is especially
promising for BCI application as it robustly averages the
terms in Eq. (10) by downweighting the influence of outlier
terms [52]. Eguchi and Kanno [90] discussed that Bregman
divergence [92] including beta and KL divergences share the
same property when the function controlling sample weights
is properly designed.

Beta divergence Dβ between distributions g(x) and f(x)
has been proposed in [90] [91] and is defined (for β > 0) as

1

β

∫
(gβ(x)− fβ(x))g(x)dx − (15)

1

β + 1

∫
(gβ+1(x)− fβ+1(x))dx,

where g(x) and f(x) are two probability distributions. Note
that [93] extends the definition of beta divergence to β ∈ R,
however, since our algorithms require that g and f are Gaus-
sian we will use β ≥ 0 (or β > c with c being a small

negative data-dependent value; see derivation in appendix for
more details). One can show easily that beta divergence and
Kullback-Leibler divergence coincide as β → 0. Thus beta
divergence can be seen as a generalization of Kullback-Leibler
divergence. The symmetric beta divergence between two zero
mean d-dimensional Gaussian distributions N (0,Σ1) and
N (0,Σ2) can be written in explicit form [52] as

γ
(
|Σ1|−

β
2 + |Σ2|−

β
2 − (16)

(β + 1)
d
2

(
|Σ2|

1−β
2

|βΣ1 + Σ2|
1
2

+
|Σ1|

1−β
2

|βΣ2 + Σ1|
1
2

))
,

with γ = 1
β

√
1

(2π)βd(β+1)d
. Since the gradient can also be

represented explicitly we can directly apply Algorithm 1 and
Algorithm 2 for computing subspaces with maximum (sums
of) beta divergence.

A robust CSP method using beta divergence has been pro-
posed in [52]. Note that this method can be easily incorporated
into our framework by setting λ = 1 and using

∆ = −
N∑
i=1

D̃β

(
V>Σi

1V || V>Σi
2V
)
, (17)

where Σi
1 and Σi

2 denote the covariance matrix estimated from
i-th trial of class 1 and 2 (assuming both classes have the
same number of trials), respectively. Since this method has
been extensively evaluated in [52], we will not consider it in
the current work.

Instead we will show that using beta divergence adds a
degree of freedom to the regularization approaches presented
above, more precisely it allows to specify (by changing the
β parameter) the type of non-stationarity we want to become
invariant to. For instance, using beta divergence with small β
in divCSP-WS penalizes single extreme events (as they are
not downweighted thus will dominate ∆) with large deviation
from the average activity, e.g. electrode artefacts, whereas
larger β parameters penalize more stable variations that occur
throughout the experiment. We will discuss this property of
beta divergence in the next section in more detail.

Note that also the multi-subject algorithm divCSP-MS may
profit from using beta divergence because integrating data
from several subjects usually requires subject selection, e.g.
[33] [34], as different users may have very different signal
properties due to differences in head size, electrode montage,
state of mind etc. With increasing4 β parameter we implicitly
perform this kind of subject selection as the influence of
“outlier subjects” that have very different signal characteristics
will be reduced. On the other hand in some applications we
are interested in the similarity between subjects and want to
identify “outlier subjects”. When using our framework with
a small β parameter the focus of the optimization shifts
from identifying activity that is common to all subjects to
identifying extreme activity that only occurs in one or few
users. This property makes beta divergence a valuable tool
that can not only be used to fine tune the type of invariance

4Note that the β parameter has the opposite effect in divCSP-MS than in
divCSP-WS due to the inversion of the sign in ∆.
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but can also be very helpful for exploratory analysis.

Divergence-based 

Framework

Between Session Stationarity [Eq. (12)]

Training Distribution vs. Test Distribution

estimated from other subjects

Within Session Stationarity [Eq. (11)]

Individual Trial vs. Class Average

Robustness [Eq. (17)]

Trial from class 1 vs. Trial from class 2

   controls robustness

Across Subject Stationarity [Eq. (13)]

Training Data vs. Training Data (other subject)

ignore class labels

Multi-Subject CSP [Eq. (14)]

Class 1 (other subject) vs. Class 2 (other subject)

invert sign of regularization term

Vanilla CSP

(No regularization)

   controls type of stationarity

Fig. 2. Unifying divergence-based CSP framework. Each box shows a
particular application scenario of the framework. It also describes how to
compute the regularization term ∆ for this scenario, e.g. in order to achieve
within session stationarity we need to compute the divergences between
individual trials and the class average (see Eq. (11)).

C. Relations to State-of-the-Art Methods

In the following we comment on the relations between our
novel framework and several state-of-the-art CSP algorithms.

Relation to Stationary Subspace Analysis
Stationary Subspace Analysis (SSA) [86] is an algorithm that
decomposes a multivariate signal into a stationary and non-
stationary part. Different variants of the algorithm have been
used to extract stationary CSP features [86] [57] [56]. All
these approaches consist of two steps, namely the removal
of non-stationarities and the computation of spatial filters in
the stationary subspace. This is an important difference to the
proposed framework that simultaneously optimizes the CSP
objective and stationarity of the features. Note that two-step
approaches may be suboptimal [80] as information that is
relevant for the second step can be removed in the first step.
Two-step approaches can be regarded as hard regularization
methods as they remove some part of the data in the prepro-
cessing step. The divCSP approaches proposed in this work
on the other hand are soft regularization methods regularizing
the filters towards stationarity with subject dependent strength.
The SSA+CSP variant proposed in [56] aims to ensure that
the removed non-stationarities do not contain discriminative
information, however, the discriminativity of the subspace is
measured using Kullback-Leibler (KL) whereas our frame-
work uses the symmetric KL divergence for this task. Since
the symmetric KL divergence has a direct relation to CSP
it is more appropriate. Our framework is also more generic

than SSA+CSP as it e.g. considers multiple types of non-
stationarity, permits utilizing data from other users, offers a
deflation mode of optimization and can be used with other
divergences.

Relation to Stationary CSP
The work on stationary CSP (sCSP) [18] originally introduced
the idea of regularizing spatial filters towards stationarity. The
method tackles the within-session non-stationarity problem,
thus it is related to divCSP-WS. Stationary CSP has been
shown to robustify the solution against artifacts in the data and
to increase stationarity of the features, thus from a conceptual
point of view both methods are very similar. The penalty
matrix of stationary CSP is computed by using a heuristic,
namely flipping the sign of negative eigenvalues, and one
can show (see Section V) that this heuristic may fail. Our
novel divCSP-WS method on the other hand measures non-
stationarity in a principled way by using divergences. Both
divCSP-WS and sCSP perform soft regularization, however,
sCSP does not capture the changes in correlation between the
extracted spatial filters, thus it can be regarded as a deflation
method. In contrast to our method sCSP does not require
gradient descent optimization, thus it is computationally more
efficient.

Relation to Kullback-Leibler CSP
Recently, [19] proposed a method (KLCSP) that combines
the CSP objective function with the non-stationarity term
proposed in [57]. Although this method is very similar to
divCSP-WS, one can identify some important differences. The
KLCSP approach is a deflation method i.e. it first extracts the
most important filter, then the second most one and so on.
Our method, when optimized with the subspace algorithm,
evaluates the objective function on the whole subspace, thus
it also measures non-stationarities in the correlations between
the extracted sources which are not captured in [19]. We
will show later that optimizing the whole subspace at once
may be useful when integrating data from different subject
as it permits extracting the optimal subspace irrespectively of
differences in source correlation between users. Furthermore
our method uses a consistent formulation that can be fully
interpreted as divergence maximization i.e. it has an infor-
mation geometric [85] [93] interpretation. Thus we can easily
change the divergence function and with it the properties of the
solution. On the other hand KLCSP heuristically combines the
CSP objective with a divergence-based penalty term, therefore
it lacks this information geometric interpretation. KLCSP has
only been applied to one kind of non-stationarity, namely the
within-session changes, whereas we propose a generic CSP
framework that can be used with different types of regular-
ization and different types of divergences. Both methods also
differ in the way the optimization is performed.

Relation to Stationary Subspace CSP
The Stationary Subspace CSP method (ssCSP) [31] estimates
the changes between the calibration and feedback session by
using other subjects’ data. Thus from a conceptual point of
view it is very similar to divCSP-BS. However, in contrast to
divCSP-BS it performs hard regularization, i.e. it completely
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TABLE I
PROPERTIES OF THE DIFFERENT STATIONARY CSP VARIANTS

Method Non-Stationarity Regularization Mode Optimization
SSA+CSP Within-Sess. Hard Sub. Gradient
sCSP Within-Sess. Soft Defl. Eigenvalue
KLCSP Within-Sess. Soft Defl. Newton
ssCSP Between-Sess. Hard Defl. Eigenvalue
mtCSP Multi-Subj. Soft Defl. Newton

removes some of the non-stationary directions (by using a
large regularization constant). Furthermore it only considers
class unrelated changes whereas divCSP-BS evaluates the vari-
ations for each class separately. The non-stationary subspace
in ssCSP is constructed by computing the eigenvectors with
largest absolute eigenvalues of the difference between the
training and test covariance matrix. Although these vectors
span a subspace with maximum symmetric KL divergence
between those covariance matrices5, the final non-stationary
subspaces of ssCSP and divCSP-BS do not coincide as both
methods differ in the way information from different subjects
is integrated.

Relation to Multi-Subject CSP Methods
A method (multi task CSP or mtCSP) that is related to divCSP-
MS has been proposed by [34]. The authors decompose the
spatial filters into a subject specific and a general part and
formulate the CSP optimization for all subjects as multi-
task learning problem. Our divCSP-MS does not perform a
joint learning of all spatial filters for all subjects, but rather
regularizes a subject specific set of spatial filters so that they
are as useful as possible for the other subjects. Furthermore
our method can learn the whole set of spatial filters at once
(subspace scheme) whereas mtCSP is a deflation method.
Note that the subspace approach may be superior for the
multi-subject problem as it permits extracting the common
activity even when subjects have different correlations e.g.
due to differences in the electrode montage or head size.
We will illustrate this point in the simulations. Above all by
using beta divergence we perform implicit subject selection by
downweighting the contributions from “outlier subjects”. The
authors of [34] propose a clustering-based approach for this
task.

In the context of related methods we also want to mention the
work of [70]. The author proposes a divergence-based method
for solving the CSP multi-class problem. We are not aware of
any work that is similar to divCSP-AS. The properties of the
different stationary CSP variants are summarized in Table I.

V. SIMULATIONS

This section investigates situations in which some of the
state-of-the-art CSP methods fail to extract the optimal spatial
filters. Since the proposed framework is very flexible it can be
adapted to give the correct solution in all these cases.

5Note that the CSP problem (maximization of a quotient) can be log-
transformed into a difference maximization problem without changing the
optimum. In [52] we proved that the CSP filters span a subspace with
maximum symmetric KL divergence.

A. One step vs. Two step methods
Two-step methods perform hard regularization, thus once

relevant information is removed in the first step these methods
are bound to fail [80]. The following example shows a situation
where the recently proposed two step methods [55] [57] fail
to extract the true spatial filters.

Consider the observed signal x(t) ∈ R10 generated as
mixture of 10 sources s(t) = [s1(t) . . . s10(t)]> with a random
orthogonal mixing matrix A ∈ R10×10

x(t) = As(t). (18)

Assume sources s1 and s2 are non-stationary. The signal of
the first source is sampled from N (0, σ1) for class 1 and
N (0, σ2) for class 2, whereas the signal of source s2 is
sampled from N (0, σ3) irrespectively of class. All the other
sources generate normally distributed data with zero mean
and unit variance. Now let σ1 = 1.2 + ε1, σ2 = 0.8 + ε1
and σ3 = 1 + ε2 with ε1 ∼ N

(
0, 1

2

)
and ε2 ∼ N

(
0, 1

3

)
be the variance parameters that are non-stationary, i.e. they
are resampled for each trial. In summary we have constructed
a data set with one discriminative and non-stationary source
and nine non-discriminative sources from which one source
is also non-stationary. We sample 100 trials per condition,
each trial contains 200 ten-dimensional samples, and repeat
the experiment 100 times. The goal is to find a spatial filter
that recovers the discriminative source s1.

Figure 3 shows the angle between the spatial filter com-
puted by divCSP-WS (one-step method) or SSA+CSP (two-
step method) and the true projection to the discriminative
source s1. One can clearly see that the two-step method
removes the discriminative information in the first step, i.e.
the median angle is over 50◦ when projecting out one or more
dimensions. In other words the two-step method projects out
the activity related to source s1 simply because it is non-
stationary. Thus two-step methods rely on the assumption that
the discriminative subspace is stationary. If this assumption
does not hold they may fail. On the other hand when applying
divCSP-WS we can control the strength of regularization. That
means we can trade-off stationarity and discriminativity; in
real applications some amount of variation will always be
present even when projecting to the sources that represent
motor imagery related activity. Consequently the simultaneous
optimization of stationarity and discriminativity is not only
more natural but also allows to fine tune the amount of
stationarity and discriminativity (soft regularization).

B. The sCSP heuristic
The following example6 shows that the heuristic used by

sCSP to construct the penalty matrix may fail, i.e. it does not
capture the true non-stationarities in the data. Assume we have
the following matrices

Σ1 =

[
0.9 0.15
0.15 0.1

]
, Σ2 =

[
0.1 0
0 0.9

]
(19)

Σ1
1 =

[
0.9 0.05
0.05 0.1

]
, Σ2

1 =

[
0.9 0.25
0.25 0.1

]
(20)

6This example comes from private communication with the authors of [19].
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Fig. 3. Comparison of one-step approach (divCSP-WS) and two-step method
(SSA+CSP). The boxplots show the distribution of the angle between the true
discriminative projection and the one provided by divCSP-WS and SSA+CSP
for different regularization parameters. One can clearly see that the two-
step method removes discriminative information in the first step, thus will
provide poor classification accuracy. Our divCSP-WS approach on the other
hand performs soft regularization thus permits determining the right trade-off
between stationarity and discriminativity.

where Σc denotes the average covariance matrices of class c
and Σ1

1 and Σ2
1 stand for the covariance matrices estimated

from trial 1 and 2 of class 1, respectively. Note that we only
assume class 1 to be non-stationary, i.e. the trial covariance
matrices of class 2 coincide with Σ2. If we aim to maximize
the ratio between the variance of class 1 and 2 and simul-
taneously want to minimize non-stationarity then the optimal
spatial filter is w = [w1 w2]> = [1 0]>. Considering the
class differences in the off-diagonal elements of Σ1 and Σ2

leads to a higher Rayleigh quotient (therefore it is preferred
by CSP), but introduces variability to the extracted features.
The penalty matrix ∆ of sCSP can be computed as

0.5 · F (Σ1
1 −Σ1) + 0.5 · F (Σ2

1 −Σ1) =

[
0.1 0
0 0.1

]
, (21)

where F is the operator that flips the negative eigenvalues
of a matrix. Since adding this matrix to the denominator of
the Rayleigh quotient (as done in sCSP) will not penalize
the off-diagonal elements, sCSP will not extract the filter
w = [1 0]>. In other words the flipping sign heuristic
fails in this example. Our divergence-based approach (as well
as SSA+CSP and KLCSP) penalizes the off-diagonal terms
because it does not rely on heuristics but rather evaluate non-
stationarity in a principled manner using KL divergence. The

divCSP-WS method uses the following regularization term ∆

2∑
i=1

Dkl

(
w>Σi

1w || w>Σ1w
)

(22)

=
1

2

(
w>Σ1

1w

w>Σ1w
+ log

(
w>Σ1w

w>Σ1
1w

)
(23)

+
w>Σ2

1w

w>Σ1w
+ log

(
w>Σ1w

w>Σ2
1w

))
− 2

=
1

2

(
2 + log

(
0.9w2

1 + 0.3w1w2 + 0.1w2
2

0.9w2
1 + 0.1w1w2 + 0.1w2

2

)
(24)

+ log

(
0.9w2

1 + 0.3w1w2 + 0.1w2
2

0.9w2
1 + 0.5w1w2 + 0.1w2

2

))
− 1.

This divCSP-WS penalty term is zero if and only if w1w2 = 0,
i.e. when disregarding the off-diagonal terms. Thus divCSP-
WS finds the optimal trade-off between stationarity and dis-
criminativity.

C. Deflation vs. Subspace algorithms

In the following let us apply the multi-subject algorithm
divCSP-MS to data of five simulated subjects. As before we
use a mixture model with random orthogonal mixing matrix
A to generate the data xj(t) of each subject j

xjc(t) ∼ N
(
0,A>Σj

cA
)
. (25)

Let Σj
c =

[
Γjc 0
0 ∆j

c

]
∈ R12×12 denote the source covariance

matrix of class c and subject j with Γjc ∈ R2×2 being
the covariance matrix of discriminative sources common to
all subjects and ∆j ∈ R10×10 the corresponding subject
specific matrix. Let the first two sources of all subjects be
discriminative but have different correlations. In other words
we simulate the case where the projections that reconstruct
the two (independent) discriminative sources of subject i will
reconstruct a linear mixture of the discriminative sources of
subject j. Thus the discriminative sources of subject i and j lie
in the same subspace but have different correlations. This may
happen when e.g. the mixing matrix of subject i is a rotated
version of the mixing matrix of subject j, e.g. because of tiny
differences in electrode position or head size. For simplicity let
us assume the mixing matrix is fixed for all subjects, but the
correlations between the sources differ. The goal of the multi-
subject algorithm is to extract discriminative activity common
to all subjects, i.e. to extract the first two sources.

Let the first two sources of subject 1 be generated by a zero
mean Gaussian with variance 1.5 and 0.5 for condition one and
variance 0.5 and 1.5 for condition two, i.e. Γ1

1 =

[
1.5 0
0 0.5

]
and Γ1

2 =

[
0.5 0
0 1.5

]
. The covariance matrices Γjc for the

other subjects show the same structure as for subject one,
but are rotated by a (random) rotation matrix with angle
α ∈ [−π

4
π
4
]. The first row of Figure 4 shows a possible data

distribution of the first two sources for three subjects.
Note that the first two sources are discriminative for all

subjects, thus they should be recovered by multi-subject CSP
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algorithms. However, when applying divCSP-MS in deflation
mode the (single) filter that separates class one and two for
subject 1 may not separate the classes for the other subjects as
their source activity is rotated (see first row of Figure 4). Only
when extracting the whole subspace, i.e. sources one and two,
the algorithm “realizes” that these subspaces are equivalently
discriminative for all subjects. Thus only a subspace method
helps for these kind of data integration problems. Note that
the constructed example is equivalent to the well-known XOR
problem [94] in feature selection literature.

Now let us assume that every subject has two other dis-
criminative sources with variance 1.6 / 0.4 and 0.4 / 1.6 in
condition one and two, respectively. However, these sources
are at random positions in ∆j , i.e. they are not necessarily at
the same position for all subjects. The second row of Figure
4 illustrates a case where the sources are discriminative for
subject 1, but the subspace is not discriminative for the other
subjects.

The plot at the bottom of Figure 4 shows the results of
applying divCSP-MS (100 repetitions) in deflation (red line)
and in subspace (green line) mode to the data of subject 1.
With increasing regularization parameter the algorithms utilize
information from the four other subjects. The plot shows the
median of the largest principal angles between the true filters
capturing the activity of the first two sources and the filters
computed by divCSP-MS. One can clearly see that for small
regularization parameters λ (i.e. when only using data from
subject 1) both methods do not reconstruct the activity of
the common subspace (first row). This is because the subject
specific activity (second row) is simply more discriminative,
the subject specific sources show a variance ratio (between
both classes) of 1.6 / 0.4 compared to 1.5 / 0.5. However, with
increasing regularization i.e. when taking into account other
subjects’ data the subspace method “realizes” that there is a
subspace that is discriminative for all users, thus it is preferred
and the angle error decreases to 0. On the other hand the
deflation method does not reconstruct the common subspace
because it is not able to utilize the XOR-like structure.

D. Effects of beta divergence

In the following we investigate the effects of the β parameter
on the type of stationarity achieved by divCSP-WS. Let us
consider the two types of changes shown in Figure 5, namely
gradual changes and abrupt changes. The first row of Figure 5
shows the data distributions of five epochs that change gradu-
ally. The second row of Figure 5 shows four relatively stable
(stationary) distributions and one extreme change. We measure
both types of variations as average divergence between the
data distribution in the first epoch (reference) and the four
subsequent distributions.

The bottom row of Figure 5 plots the ratio of the divergence
terms computed on the examples in the second row and
the first row for different β parameters with logarithmic
scaling. Note that we change the scale of the x-axis at 0
(the reason for this sudden drop) as setting β to lower values
than -0.0115 results in numerical problems (see derivation of
beta divergence in appendix). Note that if the ratio of the
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Fig. 4. Comparison of deflation and subspace version of the divCSP-MS
algorithm. The first row shows a distribution that is discriminative for all three
subjects when considering the whole subspace, but is not when performing
the computation in deflation mode. Thus the top row represents the common
discriminative activity. The changes in correlation may be due to differences
in electrode montage or head size etc. The second row shows a distribution
that is only discriminative for the first subject. The plot at the bottom shows
that by using the subspace version of divCSP-MS we can identify the common
discriminative activity whereas when optimizing one filter at a time we always
prefer the specific solution.

divergences is above 1 then the abrupt change is regarded
as more non-stationary than the gradual change; the opposite
holds if the value is below 1. Thus by using beta divergence
we have an additional degree of freedom, namely we can shift
the focus from gradual changes that are relatively stable over
the data set to strong abrupt events like electrode artifacts.
Thus we can easily match the types of non-stationarities that
are present in the data and compute invariant features. This
flexibility can also be utilized for exploratory analysis, i.e.
identification of gradual changes.

E. KL divergence vs. Symmetric KL divergence

In the following we want to touch upon the difference
between the symmetric KL divergence and the KL divergence.
The KL divergence between two zero-mean Gaussians with
covariances A and B can be written in explicit form as

DKL (A || B) = log |A−1B|+ tr (B−1A) , (26)

whereas its symmetric counterpart is

D̃KL (A || B) = tr (A−1B) + tr (B−1A) . (27)

From linear algebra the following relation is known

log |A| = tr(log(A)). (28)
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Fig. 5. The first row shows five data distributions that change gradually
whereas the second row shows four distributions that are relatively stable and
one that is very different, i.e. it illustrates an abrupt change in distribution.
When using beta divergence we are able to differentiate between both types of
non-stationarity. The bottom plot shows the ratio of the regularization terms
(measured as average symmetric Kullback-Leibler divergence between the first
epoch and the other ones) of the two above sets of distributions in log scale.
Thus if the curve is above 1 (= 100) then abrupt changes are preferred, i.e. the
regularization term computed for the lower set of distributions is higher than
the one for the upper set, whereas if it is below 1 we give higher regularization
to the gradual change. Thus by changing the beta parameter we can shift the
focus from abrupt changes to gradual changes.

Using this relation we can rewrite the KL divergence objective
function as

DKL (A || B) = tr (log (A−1B)) + tr (B−1A) (29)

Thus the difference between both divergences is the log
operator inside the first trace term. This log operation down-
weights the influence of the tr (log (A−1B)) term compared
to tr (A−1B) when the eigenvalues of A−1B are very large.
The question is when does such an operation make sense ?

When A is ill-conditioned it may have eigenvalues close
to zero. In this case the term tr (A−1B) becomes very
large, consequently it will dominate the solution obtained by
using symmetric divergence D̃KL. Using the (non-symmetric)
KL divergence significantly reduces the influence of the ill-
conditioned matrix A. Thus using the log operator makes
perfectly sense in the divCSP-WS algorithm as it operates on
trial-wise covariance matrices that may be poorly estimated. In
this case the KL divergence should be preferred. On the other
hand when using average matrices as in divCSP-BS, divCSP-
AS or divCSP-MS there is no reason to downweight one term
of the divergence, thus the symmetric divergence should be
applied.

VI. EXPERIMENTAL EVALUATION

This section evaluates the proposed framework using real
EEG recordings from 80 subjects.

A. Dataset and Experimental Setup

The data set [13] used for the evaluation comes from a joint
study of TU Berlin with University Tübingen and contains
EEG recordings from 80 healthy inexperienced volunteers
performing motor imagery tasks with the left and right hand or
with the feet. The subjects performed motor imagery first in a
calibration session and then in a feedback operation in which
they had to control a 1D cursor application. Brain activity was
recorded from the scalp with multi-channel EEG amplifiers
using 119 Ag/AgCl electrodes in an extended 10-20 system
sampled at 1000 Hz (downsampled to 100 Hz) with a band-
pass from 0.05 to 200 Hz. Three runs with 25 trials of each
motor condition were recorded in the calibration session, then
the two best classes were selected and the subjects performed
feedback with three runs of 100 trials. Both sessions were
recorded on the same day.

For the offline analysis we manually select 62 electrodes
densely covering the motor cortex, filter the data in 8-30 Hz
with a 5-order Butterworth filter and extract a time segment
from 750ms to 3500ms after the trial start. We do not apply
any manual or automatic rejection of trials or electrodes and
use six spatial filters for feature extraction. As classifier we
apply Linear Discriminant Analysis (LDA) after computing
the logarithm of the variance on the spatially filtered data. We
measure performance as rate of misclassification and normal-
ize the covariance matrices by dividing them by their traces.
The parameter λ is selected from the set of 11 candidates {0,
0.1, 0.2. . . 1} by 5-fold cross-validation on the calibration data
using minimal error rate as selection criterion. We compare the
different divCSP approaches to several state-of-the-art algo-
rithms and also select their regularization parameters by cross-
validation. The following methods are used for comparison:

- SSA+CSP [57] is a two-step method that projects the
data to a stationary subspace prior to CSP computation.
The regularization parameter is the number of removed
directions in the first step. We select it from 0− 22.

- The covCSP [33] method regularizes the class-covariance
matrices towards the average covariance matrix of
other subjects. The klcovCSP [35] approach ap-
plies the same idea but weights the contributions
of other subjects by similarity (measured as inverse
KL divergence). We use the regularization parame-
ters {0, 10−5, . . . , 10−1, 0.2, . . . , 0.9, 1} for both meth-
ods. Both methods rely completely on other subjects’ data
if the parameter is 1 and they correspond to standard CSP
if it is 0.

- The ssCSP method [31] extracts the directions of common
change between training and test data from other subjects’
data. For that it extracts the l = 1 . . . 10 most non-
stationary directions for each subject and constructs a
ν = 0 . . . 10 dimensional subspace from them. These
directions of common change are then penalized in the
spatial filter computation.
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- The KLCSP method [19] optimizes the same objective
as deflation divCSP-WS with β = 0. Thus we use our
implementation with λ = {0, 0.1, 0.2 . . . 1} to compute
the KLCSP spatial filters.

B. Reducing Within-Session Non-Stationarity

In the first experiment we aim to increase the stationarity of
the training features by applying divCSP-WS. In order to cap-
ture different kinds of variations, both single extreme events
and common slow changes, we test our algorithm with differ-
ent beta parameters. We use β = 0, 0.5, 1 and the minimal pos-
sible7 negative value from −0.0005,−0.0010,−0.0015, . . ..
We select the best of these four β values for each subject
by applying cross validation. Figure 6 shows the error rates
of all subjects for the subspace and deflation divCSP-WS and
compares them to standard CSP (first row), SSA+CSP (second
row) and KLCSP (last row). Note that we did not reimplement
the original KLCSP algorithm, but use the deflation divCSP-
WS algorithm with β = 0 as both algorithms optimize the
same objective. Each circle in the scatter plot represents the
error rate of one subject and the red number in the lower
right corner denotes the p-value when applying the one-sided
Wilcoxon sign-rank test. The error rate of our approach is
represented on the y-axis i.e. if the circle is below the solid
line then our method outperforms the baseline for this subject.
The null hypothesis of the Wilcoxon test is that the median
of the error rate differences (our method (y-axis) - baseline
method (x-axis)) is greater or equal to zero. For p < 0.05
we reject this null hypothesis, thus we say that our method
significantly outperform the baseline.

One can see from the plot that the deflation divCSP-WS
outperforms the subspace method. It significantly decreases
classification error rates compared to CSP (p=0.0481); the
subspace approach does not show any improvement. The
subspace method performs poorly as it considers changes in
correlations between different spatial filters. These correla-
tions are ignored in the feature extraction and classification
process, thus should not be considered when computing the
spatial filters. One can also see from the plots that the
simultaneous optimization of two objectives, discriminativity
and stationarity in this case, is superior to the sequential
optimization as done by the two-step SSA+CSP approach.
The improvement of the deflation divCSP-WS algorithm is
very close to being significant (p=0.0526). This observation
is in line with the simulations performed in the last section
and with previous work [80]. The fact that two-step methods
may remove information in the first step that is important
for the second step is a significant disadvantage of these
approaches. We will comment on this in the next paragraph.
The scatter plots at the bottom show the advantage of using the
beta divergence version of our algorithms. The results show
that the Kullback-Leibler divergence algorithm (as in [19])
performs worse than our deflation divCSP-WS method and
the difference between both algorithms is close to being sig-
nificant (p=0.0750). The improvement is due to the additional
flexibility of beta divergence; it can capture a whole range

7See derivation in appendix.

of different non-stationarities. On the other hand one can see
that KLCSP significantly outperforms the subspace divCSP-
WS method (p=0.9814). Thus the additional flexibility of using
different beta values does not compensate for the disadvantage
of considering non-stationarities in correlation.
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Fig. 6. Scatter plots showing error rates of divCSP-WS and three baseline
methods. The left column shows the error rates of subspace divCSP-WS, the
right one of the deflation algorithm. Each circle represents one subject and if
the circle is below the solid line then our method outperforms the baseline
for this subject. The p-value of the Wilcoxon signed rank test is shown in the
right bottom corner.

Above we discussed situations where two-step methods
may provide suboptimal performance. Figure 7 shows the
boxplot of the difference in error rate between SSA+CSP
[57] and CSP. In SSA+CSP we remove 0 − 22 dimensions
from the data prior to CSP computation. One can see from
the figure that the classification performance of SSA+CSP
drops with increasing number of removed dimensions. This
means that the directions removed in the first step of SSA+CSP
contain increasing amount of discriminative information (that
is required for the second step). The two scalp plots visualize
the activity patterns corresponding to the removed directions
for two subjects. One can clearly see that the upper scalp plot
shows activity over the left motor and temporal cortex. Since
such activity contains motor imagery related information (right
hand class) it is not advisable to remove it. Since SSA only
evaluates the amount of non-stationarity and does not take
into account the information content it removes this activity,



SAMEK ET AL. − DIVERGENCE-BASED FRAMEWORK FOR CSP ALGORITHMS 14

thus the corresponding subject shows a significant increase in
error rate, namely from 9.3 % to 18.3 %. The lower scalp plot
shows a subject that improves classification accuracy (from
40 % to 18 %) by applying SSA preprocessing. One can see
that some temporal activity is removed from this subjects data.
Since this information is not motor imagery related it can be
safely removed. These examples shows that two-step methods
may fail in practice. Although the authors of [56] propose
to trade-off non-stationarity and discriminativity when using
SSA, we emphasize the limits of applying two step approaches
for feature extraction in BCI.
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Fig. 7. The boxplot shows the distribution of the differences in error rate
when removing 0 . . . 22 dimensions from the data by applying SSA. One can
see that the error rates significantly increase as more dimensions are removed.
The two scalp plots show the activity patterns corresponding to the removed
direction. One can clearly see that for the subject with increasing error rate
the (upper) scalp plot shows activity related to motor imagery. Since this
information should not be removed, SSA+CSP increases the error rate for
this subject.

The effects of different beta parameters can be studied in
Figure 8. The upper panel shows a subject’s EEG signal with
a strong artifact in electrode FFC6. The three scalp plots at
the bottom panel show the activity patterns of the first spatial
filter extracted by divCSP-WS with λ = 0.5 and different
beta values. One can clearly see that if β = 0 (left scalp
plot) the regularization of divCSP-WS has no effect on the
solution. The pattern focuses on the activity in FFC6 (due to
the strong artifact) and does not capture motor imagery related
information. Thus the error rate is over 40 %. If using a beta
value of 1 (right scalp plot) there is an improvement i.e. a
right hand motor imagery pattern emerges, however, the focus
on the electrode FFC6 is still present. This is because larger
β values downweight the influence of the artifactual trial in
the penalty term ∆, thus the regularization does not penalize
strong extreme events like the artifact in FFC6. The situation
changes if β < 0 as then we enhance the extreme values in
the penalty term ∆ computation i.e. the artifact dominates
the penalty term thus is much more strongly penalized in
the optimization process. The effect of this penalty is that
a true motor imagery related pattern emerges and the focus
on electrode FFC6 disappears. The error rate of this pattern
also largely decreases to 13.8%. We showed a similar effect
in the toy simulations in last section. This additional degree
of freedom makes our method(s) much more flexible than e.g.
KLCSP [19].

beta = 0 beta < 0 beta > 0

Error rate 45.9% Error rate 13.8% Error rate 34.9%

artifact

Fig. 8. Effects of different beta values on the artifact penalization of subject
74. The upper plot shows an artifact in the signal of the FFC6 electrode.
The lower panel shows the activity patterns computed by divCSP-WS with
λ = 0.5. One can see that the regularization (minimizing the effect of FFC6
on the solution) only works properly if β < 0 as this enhances the artifactual
activity and thus increases its relative penalty.

C. Reducing Between-Session Shifts

In this subsection we describe several between-session ex-
periments using divCSP-BS. As before we apply the subspace
and deflation algorithm and use the beta values 0, 0.5 and
1. We compare the results to standard CSP, to the recently
proposed stationary subspace CSP (ssCSP) method [31] and
to divCSP-BS with β = 0. Note that we only integrate
information from other subjects with the same motor imagery
classes and select the regularization parameters by minimizing
test error on the other subjects’ data. The first row of Figure
9 shows a performance improvement of the deflation divCSP-
BS method over CSP. Although there is a trend the difference
is not statistically significant (p=0.0938). This confirms the
observation of [31] that information about shifts between
sessions can be transferred across subjects. In contrast to the
within-session non-stationarities presented in the last subsec-
tion we are not so much interested in single extreme non-
stationarities between training and test sessions, but rather
in changes that are stable over subjects. By using β > 0
we penalize these (common) changes between calibration and
feedback. However, it seems that using different beta param-
eters does not have a large impact on the results (see bottom
row). The second row of Figure 9 compares divCSP-BS to
ssCSP. Although we compute the shift between calibration
and feedback session for each class separately, our method
does not outperform ssCSP which does not use class labels
(p=0.5377). This suggests that the non-stationarities between
calibration and feedback session are not class-dependent.

The upper plot in Figure 10 shows the median (over
subjects) KL divergence differences between CSP (no regu-
larization) and deflation divCSP-BS with increasing regular-
ization. The divergence is computed between the calibration
and feedback feature distribution when applying the filters
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Fig. 9. Scatter plots showing error rates of divCSP-BS and three baseline
methods. The left column shows the error rates of subspace divCSP-BS, the
right one of the deflation algorithm. Each circle represents one subject and if
the circle is below the solid line then our method outperforms the baseline
for this subject. The p-value of the Wilcoxon signed rank test is shown in the
right bottom corner.

computed by divCSP-BS with increasing λ. One can see from
the plot that incorporating information from other users about
the shift between calibration and feedback constantly reduces
this shift on the subject of interest. This confirms our obser-
vation from [31] that non-stationarities are similar between
different subjects. The lower panel of the figure shows the
effect of applying divCSP-BS. It shows the feature distribution
of the ’left hand class’ train data (green circles) and the
corresponding test data (red crosses) of subject 13. The six
dimensional feature distribution is projected to two dimensions
by using the largest PCA component and the normal vector to
the classification hyperplane. One can see that when applying
CSP there is a large shift in the distribution between training
and test. If on the other hand incorporating information form
other subjects one obtains a stationary distribution with no
significant shift between training and test.

D. Stationarity Across Subjects

This subsection discusses the results of divCSP-AS; as
before we use the beta values 0, 0.5 and 1. Figure 11 shows
the results of both the subspace and deflation algorithm and
compares them to standard CSP, covCSP and klcovCSP. One
can see (first row) that divCSP-AS significantly outperforms
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Regularization Parameter

K
L
 D

iv
e

rg
e
n

c
e

 D
if
fe

re
n

c
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0 Class 1

Class 2

Normal to Hyperplane
P

C
A

 C
o

m
p

o
n

e
n

t

-20 -15 -10 -5 0

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Normal to Hyperplane

P
C

A
 C

o
m

p
o

n
e
n

t

-25 -20 -15

1

1.5

2

2.5

3

3.5

4
Training Data

Test Data

Training Data

Test Data

Fig. 10. Effect of regularizing the solution towards between-session station-
arity. The upper plot shows the median KL divergence difference between
CSP and deflation divCSP-BS with increasing regularization. The divergence
is computed between the calibration and feedback feature distribution. One
can see that the divergence decreases with increasing regularization. This
confirms that the non-stationarities are similar between different users. The
lower plots show the ’left hand’ feature distribution of training data (green
circles) and test data (red crosses) when applying CSP and divCSP-BS. The
features are projected to the largest PCA component and the normal vector to
the classification hyperplane. One can clearly see that the divCSP-BS solution
provides much more stationary feature distributions than CSP.

CSP (p < 10−4), i.e. regularizing the feature distribution
towards the feature distribution of the other subjects seems
to have a strong effect on the quality of the spatial filters.
This regularization effect is stronger than when regularizing
the covariance matrices towards other subjects as done by
covCSP (p=0.0626) and klcovCSP (p=0.1120).

Figure 12 evaluates the improvement of subject 74, the user
with largest decrease in error rate. The lower boxplot shows the
distribution of the KL divergence between subject 74 and the
other subjects when applying the first spatial filter computed
by divCSP-AS with increasing regularization parameters. One
can see that there is a large gap when moving from λ = 0.2
to λ = 0.3, i.e. the feature distribution of subject 74 becomes
similar to the distribution of other subjects. Above the boxplot
we visualize the activation patterns of the first spatial filter
computed with divCSP-AS. One can clearly see the electrode
artifact in FFC6 (see also Figure 8). Since this activity is not
present in the other subjects it is penalized when applying
divCSP-AS. For regularization parameters larger than λ = 0.3
it completely vanishes. In other words regularizing the feature
distribution towards other subjects helps to remove this kinds
of anomalies. Note also that for λ > 0.5 the activity patterns
show strong activation in motor imagery related areas. This
activation is captured by divCSP-AS as it is present in all
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Fig. 11. Scatter plots showing error rates of divCSP-AS and three baseline
methods. The left column shows the error rates of subspace divCSP-AS, the
right one of the deflation algorithm. Each circle represents one subject and if
the circle is below the solid line then our method outperforms the baseline
for this subject. The p-value of the Wilcoxon signed rank test is shown in the
right bottom corner.

subjects (having the same classes as subject 74).

E. Subject-Independent Spatial Filters

In the last subsection we perform regularization towards
other subjects, here we aim to use other subjects’ data to
extract a subject independent feature space. Therefore we
apply divCSP-MS, covCSP and klcovCSP with λ = 1 (i.e.
the case only with the regularization term). In other words we
estimate the spatial filters by using other subjects’ data only.
Note that we still use the calibration data to train the LDA
classifier, only the spatial filters are ”subject independent”. As
before we apply our algorithm with the three beta parameters
0, 0.5 and 1. Figure 13 compares the error rates of the subspace
and deflation divCSP-MS algorithm with three baselines. One
can clearly see that both the subspace and deflation divCSP-
MS provide better feature spaces than covCSP and klcovCSP.
The improvement is statistically significant for the subspace
algorithm with p=0.0004 when comparing its performance to
covCSP and p=0.0147 for klcovCSP. The subspace method
performs significantly better than covCSP (p=0.0193), the
improvement over klcovCSP is not significant (p=0.2105).
This means that integrating information from other subjects
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Fig. 12. Effects of applying divCSP-AS. The boxplot shows the similarity of
the feature distribution of subject 74 and the other subjects when projected by
the first spatial filter computed with divCSP-AS. The similarity is measured as
KL divergence. The activity patterns above the boxplot show that the influence
of the artifact in electrode FFC6 decreases with increasing regularization.

by combining divergence terms that measure motor imagery
related activity is superior to combining the covariance ma-
trices i.e. fusing all information. As observed in the above
simulations the subspace method is (slightly) better than the
deflation approach. The subspace method is not affected by
changes in correlation, thus it identifies the common subspace
even when differences in correlation of the sources exist
between subjects. We can also see (bottom row) that using beta
divergence significantly improves the algorithm, the p-value
for the subspace approach is 0.0101, for the deflation method
it is smaller than 10−4. It seems that beta values larger than
zero have a positive effect on performance as they downweight
the influence of individual subjects and help to extract common
motor imagery related activity.

A direct comparison of the subspace and deflation method
for the three beta values is shown in the upper panel of
Figure 14. For the case of beta = 0 one can see a clear
advantage of the subspace method (p=0.0001). As shown in
the simulations (Figure 4) the deflation approach may prefer
single-subject solutions as it does not capture common activity
if the correlations of the sources vary between subjects.
However, the relative gain of these single-subject solutions
decreases with increasing beta value (because of downweight-
ing effect), therefore the subspace and deflation algorithms
perform similarly for beta = 1. The lower panel of Figure
14 compares the subject independent feature spaces computed
by divCSP-MS (after selecting β by cross-validation) to the
CSP solution when computed on increasing number of trials.
For that we randomly select n = 2 . . . 75 trials per class
from the calibration data and compute CSP on this smaller
data set. Afterwards we train the LDA classifier on the whole
calibration data and apply it to the feedback data. We repeat
this 50 times. In the left boxplot one can clearly see that the
subject-independent spatial filters computed with the subspace
method (green line) perform as well as the filters computed
by CSP, even when using all 150 trials for the covariance
estimation. The deflation divCSP-MS method shows a similar
performance, although it has much higher variance and its 25%
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Fig. 13. Scatter plots showing error rates of divCSP-MS and three baseline
methods (for λ = 1). The left column shows the error rates of subspace
divCSP-MS, the right one of the deflation algorithm. Each circle represents
one subject and if the circle is below the solid line then our method
outperforms the baseline for this subject. The p-value of the Wilcoxon signed
rank test is shown in the right bottom corner.

quantile is significantly lower than in the case of the subspace
approach. Note that the performance of deflation divCSP-MS
is significantly worse than CSP (computed on all trials) when
using β = 0, whereas the performance of the subspace method
is (almost) on par with CSP in such a setting. Thus for subject-
independent spatial filters we strongly recommend to use the
subspace method and the beta divergence algorithm.

VII. DISCUSSION

Common spatial patterns and its variants have established
themselves as a de facto standard in EEG analysis in particular
for BCI. Since to date numerous papers have been presented,
it has become more and more difficult for the user and
practitioner to chose between the appropriate algorithm vari-
ants. In this work we presented a common divergence-based
framework for the CSP family that unifies CSP variants in a
principled manner. It can encompass different types of robust-
ness properties, regularization, invariances and also allows to
integrate variants of non-stationarity. Moreover we could show
that our novel framework can also help to transfer information
from one subject to another, and in that manner yield subject
independent decoders. The heart of our versatile framework
is a reformulation of CSP as a divergence maximization
problem. Here we suggested two possible directions to solve
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Fig. 14. Comparison of deflation and subspace version of the divCSP-MS
algorithm with λ = 1, i.e. when learning spatial filters on other subjects.
The upper plots compare the error rates of the deflation method (x-axis) and
the subspace approach (y-axis) for different beta values. For the case of beta
= 0 one can see that most of the circles representing the error rate of a
particular subject are below the solid line, i.e. the subspace method perform
better for these subjects. The relative advantage of the subspace method
decreases constantly with increasing beta value. The lower boxplots show
the distribution of error rate differences for both the subspace and deflation
divCSP-MS approach and CSP computed with different numbers of trials.
Both divCSP-MS methods provide significantly better results than CSP when
trained on less than 15 trials per class. The CSP performance is poor in this
case as the high-dimensional covariance matrices can not be reliably estimated
on 15 trials. Although divCSP-MS computes spatial filters by using other
subjects’ data only, its performance is on par with CSP that use all 75 trials
for covariance estimation.

the optimization problem: a deflation variant, where the most
salient features are found first and a subspace formulation,
where the full subspace is extracted. Interestingly, for some
problems the deflation optimization is more advantageous, sic
robust, over using the subspace approach; for others it is the
other way round. Intuitive examples show the limits of existing
methods and the power of the novel framework. Finally we
provided an extensive numerical comparison study over 80
subjects, allowing for physiological interpretation. With our
work we furthermore have hoped to contribute to a common
platform that allows a simple and straight forward comparison
of new algorithms to the large CSP family encompassed by
the novel framework.

It will be interesting to investigate other divergence mea-
sures, especially the class of Bregmann divergences which may
further robustify our algorithm. Furthermore we would like
to use our information geometric framework for classification
purposes directly on the manifold of covariance matrices as
done in [82], in the context of kernel machines [95] and apply
our methods to multimodal data [96]. Future research will
apply our framework in the context of online BCI experiments
and generic biomedical data.
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APPENDIX

The objective function of divCSP L(R) is a sum of (symmet-
ric) divergences between d-dimensional Gaussian distributions∑

D
(
(IdRP)Σi(P

>R>I>d ) || (IdRP)Σj(P
>R>I>d )

)
.

We will show that it can be expressed in explicit form when
using KL divergence and beta divergence. Let us denote
the whitened covariance matrices as Σ̃ = PΣP> and the
projected ones as Σ̄ = IdRPΣP>R>Id. Note that we aim to
maximize L(R) under the orthogonality constraint RR> = I.
This can be achieved by using Lie Group Methods [88]. More
precisely, we search over the Lie group SO(n) of orthogonal
matrices by computing the gradient in the corresponding Lie
algebra so(n). The gradient in so(n) can be calculated as

∇L = (∇R L) R> − R (∇R L)>.

After finding the search direction in the set of skew symmetric
matrices we can compute the orthogonal update matrix by
using the exponential map.

DERIVATION OF DIVCSP USING KL DIVERGENCE

From information theory [97] it is well known that the KL
divergence between two zero mean Gaussians gi ∼ N

(
0, Σ̄i

)
and fj ∼ N

(
0, Σ̄j

)
has the following explicit representation

D
(
(IdRP)Σi(P

>R>I>d ) || (IdRP)Σj(P
>R>I>d )

)
=

1

2

(
log
∣∣Σ̄j

∣∣ − log
∣∣Σ̄i

∣∣ + tr
[
(Σ̄j)

−1Σ̄i

]
− d

)
.

Note that the log terms cancel out when using the symmetric
divergence, however, an additional trace term (with swapped
Σ̄i and Σ̄j) appears.
The gradient of the divergence with respect to R can be
computed separately for every term in the sum.
Let us rewrite the derivative of the log-determinant term

∇R log
∣∣(IdRP)Σj(P

>R>I>d )
∣∣ = I>d

[
∇G log

∣∣∣G>Σ̃jG
∣∣∣]>

with G = R̃> and R̃ is the d × D matrix consisting of the
first d rows of R. According to [98] this is

I>d

[
2Σ̃jG(G>Σ̃jG)−1

]>
or 2I>d (Σ̄j)

−1IdΣ̃jR.

The derivative of the other log-determinant term can be
computed in an analogous way and gives

2I>d (Σ̄i)
−1IdΣ̃iR.

The derivative of the trace term can be computed as follows.
Let us rewrite

∇R tr
[
((IdRP)Σj(P

>R>I>d ))−1((IdRP)Σi(P
>R>I>d ))

]
= I>d

[
∇G tr

[(
G>Σ̃jG

)−1 (
G>Σ̃iG

)]]>
,

with G being defined as above. According to [98] this is

I>d

[
−2Σ̃jG(G>Σ̃jG)−1G>Σ̃iG(G>Σ̃jG)−1 +

2Σ̃iG(G>Σ̃iG)−1
]>
.

Thus the derivative of the trace term is

−2I>d

(
(Σ̄j)

−1Σ̄i(Σ̄j)
−1IdΣ̃j − (Σ̄i)

−1IdΣ̃i

)
R.

DERIVATION OF DIVCSP USING BETA DIVERGENCE

Beta divergence between two zero-mean Gaussians
gi ∼ N

(
0, Σ̄i

)
and fj ∼ N

(
0, Σ̄j

)
is defined as

Dβ

(
(IdRP)Σi(P

>R>I>d ) || (IdRP)Σj(P
>R>I>d )

)
=

(
1

β(β + 1)

∫
gβ+1
i (x)dx − 1

β

∫
fβj gi(x)dx +

1

β + 1

∫
fβ+1
j (x)dx

)
.

The integral
∫
fβ+1
j (x)dx can be expressed as

1

(2π)
(β+1)d

2 |Σ̄j |
β+1
2

∫
e−

1
2
xT (β+1)Σ̄−1

j xdx

=
1

(2π)
(β+1)d

2 |Σ̄j |
β+1
2

∫
e−

1
2
xT ( 1

β+1
Σ̄j)
−1xdx

∗
=

1

(2π)
(β+1)d

2 |Σ̄j |
β+1
2

(2π)
d
2

(
1

β + 1

) d
2

|Σ̄j |
1
2

=
1

(2π)
βd
2 (β + 1)

d
2

|Σ̄j |−
β
2

Note that step ∗ assumes a Gaussian distribution under the
integral, i.e. β > −1. The integral

∫
gβ+1
i (x)dx can be

computed in an analogous way.
The integral

∫
fβj (x)gi(x)dx is expressed in explicit form as

1

(2π)
βd
2 |Σ̄j |

β
2

1

(2π)
d
2 |Σ̄i|

1
2

∫
e−

1
2
xT (β(Σ̄j)

−1+(Σ̄i)
−1)xdx

∗
=

1

(2π)
βd
2 |Σ̄j |

β
2

1

(2π)
d
2 |Σ̄i|

1
2

(2π)
d
2

∣∣β(Σ̄j)
−1 + (Σ̄i)

−1
∣∣− 1

2

=
1

(2π)
βd
2 |Σ̄j |

β
2 |Σ̄i|

1
2

∣∣β(Σ̄j)
−1 + (Σ̄i)

−1
∣∣− 1

2

=
1

(2π)
βd
2

|Σ̄j |
1−β
2

∣∣Σ̄j(β(Σ̄j)
−1 + (Σ̄i)

−1)Σ̄i

∣∣− 1
2

=
1

(2π)
βd
2

|Σ̄j |
1−β
2

∣∣βΣ̄i + Σ̄j

∣∣− 1
2

Note that also here step ∗ assumes that β(Σ̄j)
−1 + (Σ̄i)

−1 is
symmetric positive definite. This assumption is always true for
β ≥ 0, however, it is violated for β < c with c being some
negative constant. Therefore we apply very small negative β
values for divCSP-WS, more precisely we select the smallest
possible β from −0.0005,−0.0010,−0.0015, . . .

When using the symmetric beta divergence some terms
cancel out and a simplified explicit representation can be
derived (see Eq. (16)). As before we separately compute the
gradient of each term of the beta divergence. The gradient of
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TABLE II
GRADIENTS FOR THE DIVCSP METHODS USING KL DIVERGENCE.

Method Gradient ∇R L

CSP term (1− λ)I>d

(
(Σ̄2)−1IdΣ̃2 − (Σ̄1)−1Σ̄2(Σ̄1)−1IdΣ̃1 +

(Σ̄1)−1IdΣ̃1 − (Σ̄2)−1Σ̄1(Σ̄2)−1IdΣ̃2

)
R

divCSP-WS CSP term − λ
2N

∑2
c=1

∑N
i=1 I>d

(
(Σ̄i

c)
−1IdΣ̃

i
c − (Σ̄c)−1Σ̄i

c(Σ̄c)−1IdΣ̃c −

(Σ̄i
c)
−1IdΣ̃

i
c + (Σ̄c)−1IdΣ̃c

)
R

divCSP-BS CSP term − λ
2K

∑2
c=1

∑K
k=1 I>d

(
(Σ̄k

te,c)
−1IdΣ̃

k
te,c − (Σ̄k

tr,c)
−1Σ̄k

te,c(Σ̄
k
tr,c)

−1IdΣ̃
k
tr,c +

(Σ̄k
tr,c)

−1IdΣ̃
k
tr,c − (Σ̄k

te,c)
−1Σ̄k

tr,c(Σ̄
k
te,c)

−1IdΣ̃
k
te,c

)
R

divCSP-AS CSP term − λ
2K

∑2
c=1

∑K
k=1 I>d

(
(Σ̄`

tr,c)
−1IdΣ̃

`
tr,c − (Σ̄k

tr,c)
−1Σ̄`

tr,c(Σ̄
k
tr,c)

−1IdΣ̃
k
tr,c +

(Σ̄k
tr,c)

−1IdΣ̃
k
tr,c − (Σ̄`

tr,c)
−1Σ̄k

tr,c(Σ̄
`
tr,c)

−1IdΣ̃
`
tr,c

)
R

divCSP-MS CSP term + λ
K

∑K
k=1 I>d

(
(Σ̄k

2)−1IdΣ̃
k
2 − (Σ̄k

1)−1Σ̄k
2(Σ̄k

1)−1IdΣ̃
k
1 +

(Σ̄k
1)−1IdΣ̃

k
1 − (Σ̄k

2)−1Σ̄k
1(Σ̄k

2)−1IdΣ̃
k
2

)
R

|Σ̄j |−
β
2 with respect to R can be computed when rewriting

∇R

∣∣(IdRP)Σj(P
>R>I>d )

∣∣− β2 = I>d

[
∇G |G>Σ̃jG|−

β
2

]>
with G = R̃T and R̃ is the d × D matrix consisting of the
first d rows of R. According to matrix cookbook [98] this is

−βI>d |G>Σ̃jG|−
β
2 ·
(
Σ̃jG(G>Σ̃jG)−1

)>
= −βI>d |Σ̄j |−

β
2 (Σ̄j)

−1IdΣ̃jR.

The gradient of |Σ̄i|−
β
2 can be derived in an analogous way

and gives

−βI>d |Σ̄i|−
β
2 (Σ̄i)

−1IdΣ̃iR.

Let us rewrite the gradient of |Σ̄j |
1−β
2 |βΣ̄i + Σ̄j |−

1
2 as

∇R

[
|(I>d RP)Σj(P

>R>I>d )|
1−β
2 · |β(IdRP)Σi(P

>R>I>d ) +

(IdRP)Σj(P
>R>I>d )|− 1

2

]
= I>d

[
∇G

(
|G>Σ̃jG|

1−β
2 · |βG>Σ̃iG + G>Σ̃jG|−

1
2

)]T
with G being defined as above. According to the product rule
this is

−I>d

[
(β − 1)|G>Σ̃jG|−

β+1
2 · |G>Σ̃jG|·(

GΣ̃j(G
>Σ̃jG)−1

)
· |βG>Σ̃iG + G>Σ̃jG|−

1
2 +

|G>Σ̃jG|
1−β
2 · |G>(βΣ̃i + Σ̃j)G|−

3
2 · |G>(βΣ̃i + Σ̃j)G|·

((βΣ̃i + Σ̃j)G(G>(βΣ̃i + Σ̃j)G)−1)
]>

Writing it back gives

−I>d

[
(β − 1)|Σ̄j |

1−β
2 · |βΣ̄i + Σ̄j |−

1
2 · (Σ̄j)

−1IdΣ̃j +

|Σ̄j |
1−β
2 · |βΣ̄i + Σ̄j |−

1
2 · (βΣ̄i + Σ̄j)

−1Id(βΣ̃i + Σ̃j)
]>

R

PROOF OF THEOREM

Note that [70] has provided a proof for the special case
of one spatial filter. Let R̃ ∈ Rd×D denote the orthogonal
projection onto a subspace of dimension d and let Σ̃1 and Σ̃2

represent the whitened covariance matrices with Σ̃1 +Σ̃2 = I.
Without loss of generality8 we assume that R̃Σ̃1R̃

> = ∆1 and
R̃Σ̃2R̃

> = I−∆1 with ∆1 are diagonal matrices.
The KL divergence divCSP algorithm (λ = 0) optimizes the
following objective function Lkl(R̃) (ignoring constant terms)

tr
(

(R̃Σ̃1R̃
>)−1(R̃Σ̃2R̃

>)
)

+

tr
(

(R̃Σ̃2R̃
>)−1(R̃Σ̃1R̃

>)
)

= tr (∆−1
1 (I−∆1)) + tr ((I−∆1)−1∆1)

=

d∑
i=1

1− νi
νi

+

d∑
i=1

νi
1− νi

,

where νi is the i-th diagonal element of ∆1.

Let us decompose R̃ =

[
U

V

]
into two matrices U ∈ Rk×D

and V ∈ Rd−k×D as follows

U =

{
ri :

1− νi
νi

>
νi

1− νi

}
=⇒ νi < 0.5

V =

{
ri :

1− νi
νi

≤ νi
1− νi

}
=⇒ νi ≥ 0.5.

Thus we can rewrite the objective function Lkl(R̃) as
k∑
i=1

1− νi
νi

+
νi

1− νi︸ ︷︷ ︸
U

+

d∑
i=k+1

1− νi
νi

+
νi

1− νi︸ ︷︷ ︸
V

.

We prove that the top d CSP filters W, i.e. the top d eigen-
vectors vi (i = 1 . . . d) of Σ̃1 sorted by αi = max{µi, 1−µi}
where µi denotes the i-th eigenvalue of Σ̃1, maximize Lkl(R̃).
Let us divide W into Ũ and Ṽ as done above.

Case 1: Assume R̃ maximizes Lkl(R̃) and it consists of
eigenvectors vi of Σ̃1, but there exist vj ∈ R̃ with j > d
(i.e. it is not among the top (according to the above sorting) d
eigenvectors). Thus vj 6∈W and there exist wl ∈W (which

8Because the basis in the projected subspace is arbitrary, i.e. the Kullback-
Leibler divergence is invariant to right multiplication of any non-singular
matrix G ∈ Rd×d with Lkl(V) = Lkl(VG).
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TABLE III
GRADIENTS FOR THE DIVCSP METHODS USING BETA DIVERGENCE.

Method Gradient ∇R L

CSP term (1− λ)γI>d

(
β|Σ̄1|−

β
2 (Σ̄1)−1IdΣ̃1 + β|Σ̄2|−

β
2 (Σ̄2)−1IdΣ̃2 −

(β + 1)
d
2 |Σ̄2|

1−β
2 · |βΣ̄1 + Σ̄2|−

1
2 ·
[
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]
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(β + 1)
d
2 |Σ̄1|

1−β
2 · |βΣ̄2 + Σ̄1|−

1
2 ·
[
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])
R

divCSP-WS CSP term − λγ
2N

∑2
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∑N
i=1 I>d
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β
β+1
|Σ̄i
c|−

β
2 (Σ̄i

c)
−1IdΣ̃

i
c + β2

β+1
|Σ̄c|−

β
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d
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2 · |βΣ̄i
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1
2 ·
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]>)
R
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2 (Σ̄k
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k
tr,c + β|Σ̄k
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k
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d
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tr,c + Σ̄k
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d
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tr,c|
1−β
2 · |βΣ̄`

tr,c + Σ̄k
tr,c|
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tr,c)
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k
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tr,c + Σ̄k
tr,c)

−1Id(βΣ̃`
tr,c + Σ̃k

tr,c)
])

R

divCSP-MS CSP term + λγ
K

∑K
k=1 I>d

(
β|Σ̄k

1 |
− β

2 (Σ̄k
1)−1IdΣ̃

k
1 + β|Σ̄k

2 |
− β

2 (Σ̄k
2)−1IdΣ̃

k
2 −

(β + 1)
d
2 |Σ̄k

2 |
1−β
2 · |βΣ̄k

1 + Σ̄k
2 |
− 1

2 ·
[
(β − 1)(Σ̄2)−1IdΣ̃2 + (βΣ̄k

1 + Σ̄k
2)−1Id(βΣ̃k

1 + Σ̃k
2)
]
−

(β + 1)
d
2 |Σ̄k

1 |
1−β
2 · |βΣ̄k

2 + Σ̄k
1 |
− 1

2 ·
[
(β − 1)(Σ̄1)−1IdΣ̃1 + (βΣ̄k

2 + Σ̄k
1)−1Id(βΣ̃k

2 + Σ̃k
1)
])

R

The constant γ is defined as γ = − 1

β(2π)
βd
2 (β+1)

d
2

is among the top d eigenvectors) with wl 6∈ R̃.
Without loss of generality assume vj ∈ U. In the following
we prove

1− νj
νj

+
νj

1− νj
<

1− νl
νl

+
νl

1− νl
,

where νl and νj denote the diagonal element when applying wl

and vj , respectively. Note that the function f(ν) = 1−ν
ν

+ ν
1−ν

is maximized at the borders (one can show this by taking the
derivative).
Assume wl ∈ Ũ. Then νl < νj < 0.5 because wl is selected
before vj (remember vj 6∈ W) according to above sorting.
Thus f(νj) < f(νl) as f(ν) is maximized for the smallest
argument ν (if ν < 0.5).
Assume wl ∈ Ṽ. Then 1 − νl < νj < 0.5 because wl is
selected before vj according to above sorting. Thus f(νj) <
f(1− νl) = f(νl).
Let us define B as R̃, but with wl instead of vj . Thus
Lkl(R̃) < Lkl(B). This is a contradiction to the assumption
that R̃ is the optimal solution.

Case 2: Assume R̃ maximizes Lkl(R̃) and there exist (at
least one) rj ∈ R̃ with rj is not an eigenvector of Σ̃1.
Without loss of generality assume rj ∈ U. Let us define a

new solution B =

[
Ũ

Ṽ

]
as follows:

Ũ consists of k eigenvectors of Σ̃1 with smallest eigenvalues.
Ṽ consists of d − k eigenvectors of Σ̃1 with largest
eigenvalues.

Let us denote the diagonal elements (eigenvalues) of UΣ̃1U
T

as ν1 < . . . < νk < 0.5 and those obtained with ŨΣ̃1Ũ
T

as u1 < . . . < uk < 0.5. Note that ui = µi where

µ1 < . . . < µD are the eigenvectors of Σ̃1 (because Ũ consists
of the smallest eigenvectors of Σ̃1). Cauchy’s interlacing
theorem [99] establishes the following relation between νi and
ui, namely ui ≤ νi. Note that equality only holds if U and
Ũ are the same, i.e. if U consists of the eigenvectors of Σ̃1

(irrespectively of permutation). Cauchy’s theorem implies that
there are no νi and νj with uk < νi < νj < uk+1. Together
with the fact that f(ν) = 1−ν

ν
+ ν

1−ν is maximized at the
borders (i.e. for smallest ν in this case) this for all i implies

1− νi
νi

+
νi

1− νi
≤ 1− ui

ui
+

ui
1− ui

,

Since ∃i where this relation is strictly positive (because we
assumed rj ∈ U), we obtain Lkl(U) < Lkl(Ũ).
Let us denote the diagonal elements (eigenvalues) of VΣ̃1V

T

as ν1 > . . . > νd−k ≥ 0.5 and those obtained with ṼΣ̃1Ṽ
T

as u1 > . . . > ud−k ≥ 0.5. Note that ui = µi where
µ1 > . . . > µD are the eigenvectors of Σ̃1 (because Ṽ con-
sists of the largest eigenvectors of Σ̃1). Cauchy’s interlacing
theorem establishes the following relation between the νi and
ui, namely νi ≤ ui. Note that equality only holds if V and
Ṽ are the same (irrespectively of permutation). Together with
the fact that f(ν) = 1−ν

ν
+ ν

1−ν is maximized at the borders
(i.e. for largest ν in this case) this implies

1− νi
νi

+
νi

1− νi
≤ 1− ui

ui
+

ui
1− ui

,

Thus Lkl(V) ≤ Lkl(Ṽ) and consequently
Lkl(R̃) = Lkl(Ũ) + Lkl(Ṽ) < Lkl(Ũ) + Lkl(Ṽ) = Lkl(B̃).
This contradicts the assumption that R̃ maximizes Lkl(R̃).
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