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Abstract

We investigate Early Hybrid Automatic Repeat reQuest (E-HARQ) feedback schemes enhanced by

Machine Learning techniques as possible path towards ultra-reliable and low-latency communication

(URLLC). To this end we propose Machine Learning methods to predict the outcome of the decoding

process ahead of the end of the transmission. We discuss different input features and classification

algorithms ranging from traditional methods to newly developed supervised autoencoders and their

prospects of reaching effective block error rates of 10−5 that are required for URLLC with only small

latency overhead. We provide realistic performance estimates in a system model incorporating scheduling

effects to demonstrate the feasibility of E-HARQ across different signal-to-noise ratios, subcode lengths,

channel conditions and system loads.

Index Terms

Communication systems, ultra-reliable and low-latency communication, physical layer, Hybrid Au-

tomatic Repeat reQuest, Machine Learning, imbalanced classification, anomaly detection, supervised

autoencoder

I. INTRODUCTION

The next generation Fifth Generation (5G) wireless mobile networks is driven by new emerging

use cases, such as Ultra-Reliable Low Latency Communication (URLLC) [1]. To mention a

few URLLC applications, tactile internet, industrial automation and smart grids contribute to

increasing demands on the underlying communication system which have not existed as such
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before [2]. Depending on the actual application either very low-latency or high reliability or a

combination of both are required. In contrast to Long Term Evolution (LTE), where services

were provided in a best effort manner, 5G networks have to guarantee these requirements. In

particular for URLLC, the ITU proposed an end-to-end latency of 1 ms and a packet error rate

of 10−5 [3]. These demanding requirements have emerged discussions in the 3GPP Rel. 16 stan-

dardization process on how to fulfill these. Self-contained subframes and grant-free access have

been proposed to address these requirements on the air interface side [4]. However, the impact

on well-known mechanisms in wireless mobile networks is still unclear. In particular, the Hybrid

Automatic Repeat reQuest (HARQ) procedure poses a bottleneck for achieving aforementioned

latencies. HARQ is a physical layer mechanism that employs feedback to transmit at higher

target Block Error Rates (BLERs), while achieving robustness of the transmission by providing

retransmissions based on the feedback (ACK - acknowledgment / NACK - non-acknowledgment).

However, it imposes an additional delay on the transmission, designated as HARQ Round Trip

Time (RTT). This lead to the abandonment of HARQ for the 1 ms end-to-end latency use case

of URLLC at least for the initial URLLC specification in Rel. 15 [5]. This decision implied

that the code rate is lowered such that a single shot transmission, i.e. no retransmissions and no

feedback, is possible. On the one hand, this simplifies the system design, however on the other

hand it sacrifices the overall spectral efficiency of URLLC transmissions. Hence, reducing the

RTT to enable HARQ for URLLC becomes a critical issue.

One possibility to achieve this is to use Early HARQ (E-HARQ) schemes [6], [7] where the

feedback on the decodability of the received signal is provided ahead of the end of the actual

transmission process. The crucial component in this setting is the classification algorithm that

provides the feedback, which we aim to optimize using Machine Learning techniques.

Earlier approaches addressing the feedback prediction problem with the sole exception of

[8] focused exclusively on one-dimensional input features as BER estimates in combination

with hard thresholding as classification algorithms [6], [7]. In [9], authors introduced the so-

called Variable Node Reliability (VNR) to exploit the substructures of Low-Density Parity-Check

(LDPC) codes for prediction. However, only a single feature, i.e. a single decoder iteration,

in combination with hard thresholding has been used. We expect improvements in prediction

accuracy by extensions in several directions in combination with more complex classification

algorithms: (a) the evolution of input features through several decoder iterations considered for

the first time in [8], (b) higher-dimensional intra-message features that in the ideal case leverage
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knowledge about the underlying block code and (c) history features that leverage information

about the channel state from past submissions that is available at the receiver.

Here we significantly expand the approach put forward in [8], where we discuss first E-

HARQ results empowered by Machine Learning techniques. We present an extended theoretical

discussion in particular including the extension to multiple retransmissions and a system model

that incorporates scheduling effects for the system evaluation thereby allowing a much more

precise evaluation of the evaluation of the performance of Early HARQ (E-HARQ)-systems in

realistic environments. On the classification side, this is supplemented by extended experiments

including different input features and classification algorithms such as a newly developed super-

vised autoencoder for a larger range of SNR conditions, subcode lengths and different channel

models.

The paper is organized as follows: In Sec. II we review the E-HARQ feedback process and

investigate the role of the classification algorithm in a simple probabilistic model and in a

more realistic setting of limited system resources. In Sec. III we discuss Machine Learning

approaches for the classification problem introducing different input features and algorithms. The

classification performance as well as the system performance is evaluated in Sec. IV for different

signal-to-noise ratios, subcode lengths and channel conditions. We summarize and conclude in

Sec. V.

II. EARLY HARQ FEEDBACK

As discussed in the Introduction, E-HARQ approaches aim to reduce the HARQ RTT by

providing the feedback on the decodability of the received signal at an earlier stage. This enables

the original transmitter to react faster to the current channel situation and to provide additional

redundancy at an earlier point. In regular HARQ, the feedback generation is strongly coupled

to the decoding process. In particular, the receiver applies the decoder on the whole signal

representing the total codeword. An embedded Cyclic Redundancy Check (CRC) enables to

check the integrity of the decoded bit stream. The result of this check is transmitted back as

HARQ feedback, either acknowledging correct reception (ACK) or asking for further redundancy

(NACK). Providing early feedback (E-HARQ) implies decoupling the feedback generation from

the decoding process, which introduces a misprediction probability since the actual outcome is

not known afore. By taking that step, it is possible to use only a portion of the transmission

and thus reducing the time from initial reception to transmitting the feedback (T1). In total,
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the retransmission is scheduled earlier, hence also reducing the HARQ RTT, see Fig. 1. The

time for transmitting the feedback and receiving the retransmission (T2) is not affected by this.

For LDPC codes, E-HARQ can be realized under exploitation of the underlying code structure

by investigating the feedback prediction problem on the basis of so-called subcodes [9], [10]

from the parity-check matrix, which we denote by the fraction of the subcode length to the

full codelength with typical values ranging from 1/2 to 5/6, designated as subTTI in Fig. 1.

Shorter subcode lengths reduce the RTT but at the same time render the prediction problem

more complicated.

TRX

T RXTTI

T1 T2

subTTI

T1 T2

TRXRe-TX
A/N

HARQ RTT

HARQ RTT

TRXRe-TX
A/N

Early HARQ

Regular HARQ

Fig. 1. Timeline of regular HARQ compared to early HARQ.

In this section, we first introduce a simple probabilistic system model in Sec. II-A to provide

an easy tool that evaluates the performance of the here presented E-HARQ schemes. However,

this model only provides a measure in means of the final BLER and additionally implies the

assumption of infinite resources. Hence, in Sec. II-B, we provide a more realistic system model

together with the analysis of implications of finite size systems in Sec. II-C. This model provides

a more suitable tool to evaluate the performance in practical systems, such as 5G and LTE. The

finite-size system argument establishes an optimal point of operation for the E-HARQ schemes

that is specific for the available system resources and does not exist in a system with unlimited

resources.

A. Probabilistic model for single-retransmission E-HARQ

We analyze single-retransmission E-HARQ in a simple probabilistic model. For notational

simplicity, we focus on the case of a single retransmission, the corresponding expressions for

multiple retransmissions can be found in App. A.

The structure of the probabilistic model for E-HARQ is reflected in Fig. 2(a). After the initial

transmission we end up in an e = 1 state with probability Pe ≡ P (e = 1), where we follow the
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(b) Incorporating the impact of an imperfect feedback

channel via an effective false negative rate.

Fig. 2. Analyzing single-retransmission E-HARQ in a simple probabilistic model.

common scheme in imbalanced classification problems encoding the minority i.e. block error

class as positive. In the case e = 0 the codeword gets decoded correctly irrespective of the

feedback sent and a false positive feedback only implies an unnecessary transmission, which

has no effect on the performance under the infinite resources assumption. In the former case

we send either ACK with probability Pfn ≡ P (f = 0|e = 1), which leads to an effective block

error, or NACK with probability P (f = 1|e = 1) = 1− Pfn. In the latter case the message gets

retransmitted which leads to an effective block error with probability Pe′|e = P (e′ = 1|e = 1).

The value for Pe′|e crucially depends on the design of the feedback system most notably on the

code rate used for the retransmission. However, one has to keep in mind that a decreased block

error rate for the retransmission due to a decreased code rate might lead to latency losses due

to the necessity of accommodating longer retransmissions. For identical retransmissions using

an independent channel realization we would have Pe′|e = Pe or even Pe′|e < Pe if the decoder

makes use of information from both transmissions for example using chase combining. For later

reference we also define the joint probability Pe∧e′ ≡ Pe · Pe′|e = P ((e = 1) ∧ (e′ = 1)). This

simple argument leads to an effective block error probability

pBLE,eff,1 = Pe ·
(

Pfn,eff + (1− Pfn,eff)Pe′|e

)

= PePfn,eff + Pe∧e′(1− Pfn,eff) , (1)

where we introduced an effective conditional probability Pfn,eff to incorporate effects of an

imperfect feedback channel. For simplicity we model the latter as a binary symmetric channel

with bit flip probability Pfb,e. Using Fig. 2(b), we then obtain

Pfn,eff = Pfn(1− Pfb,e) + (1− Pfn)Pfb,e . (2)
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Empirically we can replace Pe and Pe∧e′ by estimated block error rates and the conditional

probability Pfn by the classifier’s false negative rate (FNR) as obtained from the confusion matrix.

Obviously the lowest possible effective BLER is achieved for perfect feedback, i.e. Pfn = 0,

for which we have pBLE,eff,1 = Pe∧e′ . Eq. 1 only depends on the baseline BLERs Pe and Pe∧e′

and the classifier’s (effective) false negative rate Pfn,eff with leading order contribution given by

Pfn,eff · Pe. In the limit where the Pfn ≪ Pfb,e the leading behavior is just Pe · Pfb,e and hence

independent of the classification performance.

Considering the question of latency, the simplest approach is to consider the expected number

of retransmissions 〈∆T1〉. Therefore we evaluate the probability Pr,1 for a single retransmission.

Again using Fig. 2(a), we obtain

Pr,1 ≡ Pr = Pe(1− Pfn,eff) + (1− Pe)Pfp,eff , (3)

where we defined in analogy to Eq. 2 an effective false positive rate (FPR)

Pfp,eff = Pfp(1− Pfb,e) + (1− Pfp)Pfb,e (4)

for the conditional probability Pfp ≡ P (f = 1|e = 0) that can be identified empirically with

the classifier’s FPR. The leading order contribution to Eq. 5 is given by Pe + Pfp,eff and the

number of expected retransmissions therefore profits from a decreased FPR. For the case of a

single retransmission, the expected number of retransmissions 〈∆T1〉 coincides with the single-

retransmission probability,

〈∆T1〉 = Pr,1 . (5)

These results already hint at the crucial importance of adjusting the classifier’s working point

by balancing FNR versus FPR: A reduction of the FNR leads to a smaller effective block error

probability, see Eq. 1, but comes along with an increased FPR as the two kinds of classification

errors counterbalance each other. This in turn leads to an increase in latency, see Eq. 5. From

the present discussion it might seem a reasonable strategy to target an arbitrarily small FNR

such that the effective block error probability approaches the theoretical limit. However, this

argument only holds for a system with unlimited resources, as will be discussed below.

B. System model

In order to derive a tool for evaluation of the performance of the discussed predictors, in

this section we introduce a more sophisticated system model that leans on the structure of
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Fig. 3. Simple schematic illustrating the system setup used for evaluations.

today’s mobile network technologies. In cellular networks, such as LTE and 5G, Orthogonal

Frequency Division Multiplexing Access (OFDMA) has been established due to its scheduling

flexibility. Especially, opportunistic scheduling allows to use the best possible channel for a

transmission. Here, we assume a simplified OFDMA system with equally sized Nres resources,

i.e. frequency resources and a defined duration in time, so-called Transmission Time Interval

(TTI), as illustrated in Fig. 3. The HARQ mechanism, regular HARQ as well as E-HARQ,

requests based on the received parts of the transmission a retransmission, which is scheduled at

earliest after TRTT time slots.

The main advantage of E-HARQ over regular HARQ is the reduced HARQ RTT. Hence,

depending on the latency constraint more HARQ layers might be used to improve the system

performance. In this work, we evaluated two different system approaches, long and short TTI

lengths. The HARQ time line is mainly comprised by the processing time, which in general scales

with the TTI length [11] and the transmission time for the feedback, which is not dependent

on the TTI length of the transmission. Thus, for long TTI lengths this time can be considered

insignificant. However, for short TTI lengths this constant component has to be considered for

E-HARQ as well as regular HARQ systems. Hence, for long TTIs, we assumed TRTT = 1

for rate-1/2 E-HARQ, which means that the retransmission is received in the next TTI and

TRTT = 2 for regular HARQ, so that for regular HARQ one TTI has to be skipped. Analogously,

for short TTIs, TRTT = 5 for rate-5/6 E-HARQ and TRTT = 6 for regular HARQ. For long

and short TTIs this allows depending on the system load up to two retransmissions in the E-

HARQ-scheme compared to only one in the regular HARQ-scheme. Due to the scalability of

the TTI length, the absolute value of Tc might be set to an arbitrary value, e.g. 1 ms. Thanks
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to the aforementioned opportunistic scheduling possibilities of OFDMA, we assume that the

retransmission is independent of the previous transmission, i.e. Pe′|e = Pe and the total BLER

Pe,total = (Pe)
n+1, where n is the number of retransmissions. Furthermore, an i.i.d. arrival

rate PA,UE for each User Equipment (UE) is assumed. Thus, a single UE can only have one

new transmission per time slot. For simplicity the following argument is carried for a perfect

feedback channel, i.e. for Pfb,e = 0, which is a reasonable assumption considering the results of

the previous implying that the feedback error probability is at most of subleading importance.

The system parameters are summarized in Tab. II-B.

TABLE I

SYSTEM EVALUATION PARAMETERS

UE packet arrival rate - PA,UE medium load - 0.3, high load - 0.36

Number of UEs - NUE 20

Number of resources per time slot - Nres 10

Delay constraint - Tc long symbols - 3, short symbols - 11

long TTI HARQ RTT - TRTT 1 (E-HARQ 1/2), 2 (regular HARQ)

short TTI HARQ RTT - TRTT 5 (E-HARQ 5/6), 6 (regular HARQ)

BLER of (re-)transmissions - Pe as in Tab. III

C. Implications of finite system size

In practical systems, there is a trade-off between the False-Negative Rate (FNR) and False-

Positive Rate (FPR) due to the limited amount of available resources. Whereas a lower FNR

increases the effective BLER, as shown in the Sec. II-A, it increases the transmission overhead

on the other hand. Depending on the available resources this leads to resource shortage, also

causing additional delays since transmissions cannot be scheduled in the designated time slots.

This brings us to the term of packet failure rate which represents the probability that a packet is

delivered successfully within a given time constraint. Interestingly, there is an optimal operation

point which captures the trade-off such that the packet failure rate is minimized.

For the assumptions on the system model described in the previous section, the packet failure

probability is given as
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Ppf =(1− P0) + P0PePH,e(1, n) (6)

PH,e(j, n) =











Pfn + (1− Pfn)[(1− Pj|j−1) + Pj|j−1PePH,e(j + 1, n)], if j ≤ n

1 , otherwise

(7)

where n is the number of maximum allowed retransmissions and Pj = P (Tj ≤ Tc) for

j = 1, . . . , n. The times T0, ..., Tj, ..., Tn correspond to the time required for scheduling j

transmissions. Thus, P (T0 ≤ Tc) is the probability to schedule the initial transmission within the

time constraint, P (T1 ≤ Tc) is the probability to schedule the initial and the first retransmission

within the time constraint etc. For simplicity we only condition the scheduling probabilities on

the previous transmission, thus Pj−1Pj|j−1 = P (Tj ≤ Tc). If we set all scheduling probabilities

to one Eq. 6 reduces to Eq. 14 and can therefore be seen as generalized version of the effective

BLER. However, the effective BLER does not consider the finite resources and thus cannot

capture the actual performance of the evaluated HARQ schemes in a practical implementation.

We will refer to this case as the infinite resource baseline compared to the finite resource baselines

discussed below.

At first glance, Eq. 6 suggests minimizing the FNR Pfn. However, a closer examination reveals

that the scheduling probabilities Pj carry a dependence on both FNR and FPR via the underlying

resource distribution function. FNR and FPR counteract each other in the sense that a decreased

FNR will lead to an increase in the FPR. Considering the dependency on the resource distribution

function, an increase of the FPR Pfp increases the load on the system, thus lowers the probability

that a transmission and its retransmission is scheduled within the time constraint. This fact is

already apparent from the expected number of retransmission as obtained in Eq. 5 which scales

with the FPR at leading order. This suggests that the packet failure probability seen as a function

of the FNR will show a minimum characterizing an optimal trade-off between FNR and FPR

for the given system resources.

In Eq. 6, P (Tj ≤ Tc) highly depends on the load of the system, since it is mainly a scheduling

problem. Based on the resource distribution Pres which is discussed in App. C, we can formulate

the probability P (Tj ≤ Tc) of scheduling the initial transmission arriving at time slot t0 > 0 and
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j − 1 retransmissions within a time constraint Tc as follows:

P (Tj ≤ Tc) =

Tc−jTRTT−1
∑

k0=0

P1(t0, k0)

Tc−(j−1)TRTT−1
∑

k1=k0+TRTT

P1(t0 + k0 + TRTT, k1 − k0 − TRTT) · · ·

Tc−1
∑

kj=kj−1+TRTT

P1(t0 + kj−1 + TRTT, kj − kj−1 − TRTT) (8)

where P1(t0,∆t) is the probability that a packet that has arrived at t0 is scheduled in time slot

t0+∆t. Under the assumption that the resource distribution function is not diverging, the initial

argument of P1 in Eq. 8 is set to t0. As mentioned before, P1 is the scheduling probability

for an additional transmission assuming that this single transmission does not affect the system

probabilities. So, this means that from the slots t0 till the slot t0 + ∆t − 1 the system is fully

loaded and the observed transmission is not scheduled (random scheduling). We allow only in

slot t0 +∆t a lower load or the random scheduler picks the observed transmission. Hence, this

is expressed by:

P1(t0,∆t) ≈
Nmax
∑

k0=Nres

Pres(k0, t0)

(

1−
Nres

k0 + 1

)

(

Nmax
∑

k1=Nres

Pres(k1|Nres)

(

1−
Nres

k1 + 1

)

)(∆t−1)

(

Nres−1
∑

k=0

Pres(k|Nres) +
Nmax
∑

k=Nres

Pres(k|Nres)
Nres

k + 1

)

. (9)

where Pres is the resource distribution function, which is discussed in more detail in App. C.

The scheduling probability P1 is discussed in further detail in App. D.

The derived packet failure probability Ppf provides a good tool to evaluate the performance of

the predictors in a practical system. Additionally, apart from comparing the different E-HARQ

schemes among each other, it enables a performance comparison with regular HARQ, which

is crucial if E-HARQ is considered for URLLC. Here, aside the system setup presented in the

previous section, for regular HARQ the FNR and FPR is assumed to be zero. This is a valid

assumption since the included CRC allows to minimize false prediction events such that they

can be neglected.

III. MACHINE LEARNING FOR EARLY HARQ

The Machine Learning task of predicting the decodability of a message based on information

from at most the first few decoder iterations is an inherently imbalanced classification problem.

This imbalance is a direct consequence of the base BLERs of the order 10−3 that are required
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in order to be able to reach effective BLERs of the order 10−5, see Eq. 1. Different ways of

dealing with this imbalance have been explored, see [12] for a review, that can be categorized

as cost-sensitive learning, rebalancing techniques and threshold moving. The discussion in this

section focuses on the latter, see also [13] and references therein, in the sense of readjusting the

decision boundary of any trained model that outputs probabilities for the predicted classes.

By moving the decision boundary one is able to investigate the discriminative power of a given

classifier over a whole range of different working points. This is typically analyzed in terms of

Receiver-Operation curves (ROC) or Precision-Recall (PR) curves. In order to summarize the

classifier’s performance with a single number, one conventionally resorts to reporting area-under-

curve (AUC) metrics. Here we focus on the PR curve and the corresponding area under the PR

curve, AUC-PR, rather than the ROC-curve as the former has been shown to better reflect the

classifier’s performance for highly skewed datasets [14], [15]. However, when summarizing the

discriminative power of a classifier using a single figure, one loses fine-grained information about

classification performance at different working points. This is particularly true since the full AUC

naturally covers the whole range values for the decision boundary, many of which are irrelevant

for practical applications where the classification performance in the small FNR-regime is most

relevant. In addition, the actual implementation of the classifier requires a definite choice for the

decision threshold. Therefore we supplement the global AUC-PR information with an analysis

based on FNR-PPR curves. It is worth noting that the FNR-FPR curves directly relate to ROC

curves since the true positive rate TPR that is plotted on the ordinate of the ROC-curve relates

to the FNR via TPR = 1 - FNR. FNR and FPR represents the natural choice in our case since

they represent the key output figures from the system point of view, see Sec II-A.

A. Input features

We distinguish single-transmission-features derived from a single transmission and history

information from past transmissions. In principle all these features can be combined at will to

form the set of input features for the classification algorithm.

The raw data for a single transmission provided by the simulation is given by (a posteriori)

LLR values after different decoder iterations. E-HARQ approaches to reduce the HARQ RTT

have been first discussed in [6] and [7]. This approach estimates the Bit Error Rate (BER) based

on the Log-Likelihood Ratios (LLRs) and utilizes a hard threshold to predict the decodability
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of the received signal. The LLR gives information on the likelihood of a bit being either 1 or

0. Denoting y as the observed sequence at the receiver, the LLR of the kth bit bk is defined as:

L(bk) = log
P (bk = 1|y)

P (bk = 0|y)
. (10)

Having the LLRs of a subcode or the whole codeword allows to calculate an estimated BER for

the received signal vector, as stated here:

ˆBER =
1

M

∑

k

1

1 + |L(bk)|
, (11)

where M is the length of the LLR vector. Based on this metric the decoding outcome is predicted,

where a higher ˆBER means a lower probability of successful decoding.

A further improved approach has been presented in [9] and [10]. The authors propose to

exploit the code structure to improve the prediction performance. In case of LDPC codes, this

is realized by constructing so-called subcodes from the parity-check matrix. Using a belief-

propagation based decoder on the LLRs of the subcodeword results in a posteriori LLRs:

Λ
(j)
k = Λ

(j−1)
k +

∑

m∈M(k)

β
(j)
m,k, (12)

where M(k) is the set of check nodes which are associated to the variable node of k and β
(j)
m,k is

the check-to-variable node message from check node m to variable k. Here we use the superscript

j in Λ
(j)
k to denote the decoder iteration after which the posteriori LLRs were extracted with

the obvious identification Λ
(0)
k ≡ L(bk). Again, the a posteriori LLRss are mapped to the same

metric for each belief-propagation iteration, designated as VNR:

VNRj =
1

M

∑

i

1

1 + |Λ
(j)
i |

, (13)

where M is the length of the subcodeword and j denotes the belief-propagation iteration. Hence,

VNR0 corresponds to ˆBER. In [9], the authors used a hard threshold applied VNR5 to predict

decodability.

In the following we use the abbreviations VNRn and LLRn to denote the VNRs/LLRs

extracted from the nth decoder iteration. If n is omitted we refer to the set of all values from

zeroth to fifth decoder iteration.

Assuming the receiver is operating on the same channel across different transmissions, it might

be possible to increase the prediction performance by incorporating information from previous

transmissions. This includes all features used as single-transmission features and in addition
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features that are only available after the end of the decoding process. As two representative

examples for history features we investigate VNRs from past submissions (VNR HIST) and

information about the euclidean distance between the correct codeword and the final decoder

result before the hard decision (EUCD HIST). Here one has to keep in mind that the latter

information is only available if the correct codeword is known to the receiver as for example

from a previous pilot transmission but strictly speaking it cannot be reliably obtained from

an ordinary previous transmission as even a correct CRC does not imply a correctly decoded

transmission. For a given set of history features we consider means of the history features under

consideration extracted from different numbers of past transmissions (1,2,5,9) in order to allow

the classifier to extract information from past channel realizations at different time scales.

B. Classification algorithms

As discussed in the introduction, we can view the problem either as a heavily imbalanced

classification problem or as an anomaly detection problem. Here we briefly discuss suitable

algorithms for both of approaches. As examples for binary classification algorithms we consider

hard threshold (HT) classifiers, logistic regression (LR) (with L2 regularization and balanced class

weights)and Random Forests (RF). HT applied to VNR0/VNR5-data (referred to as HT0 and HT5

in the following) yield the classifiers used in the literature so far [6], [9]. For anomaly detection

[16] on distinguishes unsupervised, semi-supervised and supervised approaches depending on

whether only unlabeled examples, only majority-class examples or labeled examples from both

classes are available for training. As anomaly detection algorithms we consider Isolation Forests

(IF) [17] as classical tree-based semi-supervised anomaly detection algorithm and supervised

autoencoder (SAE) as a novel neural-network based approach for supervised anomaly detection,

see App. B for details. We leverage the implementations from scikit-learn [18] apart from SAC

that was implemented in PyTorch [19].

IV. RESULTS

A. Simulation setup

We compare classification performance of different classifiers based on AUC-PR and FNR-

FPR curves. As external parameters we vary the SNR between 3.0 and 4.0 dB and subcode

lengths between 1/2 and 5/6. The simulation setup used to produce training and test data follows

the one reported in [9]. We use the raw simulation output as well as a number of derived features.
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TABLE II

LINK-LEVEL SIMULATION ASSUMPTIONS FOR TRAINING AND TEST SET GENERATION.

Transport block size 360 bits

Channel Code Rate-1/5 LDPC BG2 with Z = 36, see [20]

Modulation order and algorithm QPSK, Approximated LLR

Waveform 3GPP OFDM, 1.4 MHz, normal cyclic-prefix

Channel type 1 Tx 1 Rx, TDL-C 100 n , 2.9 GHz,

3.0 km/h (pedestrian) or 100.0 km/h (vehicular)

Equalizer Frequency domain MMSE

Decoder type Min-Sum

Decoding iterations 50

VNR iterations 5

Here we consider both single-transmission features as well as history-features that incorporate

information from a number of past transmissions, see App. III-A for a detailed discussion. We

then investigate the performance of a number of classification algorithms operating on these

input features, see App. III-B for a detailed breakdown. In all cases we use 1M transmissions

with independent channel realizations for training and evaluate on a test set comprising at least

1M transmissions. The size of the test set for each SNR/subcode combination is given in the

second column of Tab. III. Hyperparameter tuning is performed once for the pedestrian channel

(at SNR 4.0 dB and subcode length 5/6) on an additional validation set also comprising 1M

samples. We standard-scale all different sets of input features independently using training set

statistics. In this way we obtain a reasonable input normalization that is required for certain

classification algorithms while keeping relative difference within different input feature groups

intact.

B. Classification Performance

We start by discussing the classification performance for different classification algorithms

based on VNR-features extending the analysis from [8]. The classification results are compiled

in Tab. III. We compare AUC-PR that characterizes the overall discriminative power of the

algorithm and which tends to 1 for a perfectly discriminative classifier. The largest improvements

to the simplest thresholding method HT0 is seen for longer subcode lengths such as 5/6. In

these cases more complex classification methods applied to the full VNR-range show only
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TABLE III

COMPARING CLASSIFICATION PERFORMANCE BASED ON AUC-PR (CLASSIFIERS AS SPECIFIED IN SEC. III-B).

SNR SC ch #train/#test BLER HT0 HT5 LR RF IF SAE

4.0dB 5/6 ped 1M/3M 0.001604 0.811 0.902 0.905 0.907 0.890 0.908

4.0dB 1/2 ped 1M/4M 0.001626 0.801 0.799 0.834 0.832 0.827 0.834

3.5dB 5/6 ped 1M/1M 0.002841 0.844 0.920 0.921 0.924 0.912 0.926

3.5dB 1/2 ped 1M/4M 0.002777 0.821 0.814 0.847 0.846 0.839 0.847

3.0dB 5/6 ped 1M/1.5M 0.004742 0.863 0.927 0.934 0.934 0.923 0.934

3.0dB 1/2 ped 1M/1.5M 0.004742 0.851 0.840 0.872 0.871 0.865 0.874

3.5dB 1/2 veh 1M/3M 0.002866 0.824 0.818 0.851 0.850 0.846 0.851

small improvements over the HT5 threshold baseline. A different picture emerges at smaller

subcode lengths. Here using VNRs from higher decoder iterations (HT5) does not improve or

even worsen the classification performance compared to HT0. Here more complex classification

algorithms show their true strengths and show larger improvements compared to HT0/HT5. This

is a plausible result since decreasing the subcode length renders the classification problem more

complicated and more complex classifiers can profit more from this complication. If we assess

the difficulty of the classification problem based on the scores achieved by the classifiers, a clear

picture emerges: As discussed before decreasing the subcode length for fixed SNR renders the

classification problem more difficult, whereas decreasing the SNR for fixed subcode length has

the opposite effect most notably because of an increasing BLER. On the other hand the BLER

sets the baseline for the HARQ performance, see Eq. 1, which overcompensates the positive

effects of the improved classification performance. The overall best discriminative power across

different SNR-values, subcode lengths and channel conditions shows the supervised autoencoder

closely followed by regularized logistic regression. The fact that the AUC-PR results for LR,

RF and SAE are so close just reflects a similar overall discriminative power of these algorithms

despite of fundamentally different underlying principles.

This does, however, not imply coinciding FNR-FPR curves, where the classifiers show rather

different behavior in certain FNR regions, see Fig. 4 for selected results. Random Forests, for

example, show in general a very good overall performance but are considerably weaker than other

classifiers in the small FNR-regime. When looking at FNR-FPR curves as the ones presented in

Fig. 4, one has to keep in mind that it is very difficult in the extremely imbalanced regime to
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Fig. 4. Selected examples for classification performance based on VNR-features in the pedestrian channel.

obtain reliable estimates of the FNR as both the numerator (false negatives) and the denominator

(sum of false negatives and true positives) are small numbers requiring large sample sizes for a

stable evaluation. This applies in particular to the region of small FNRs below 0.001.

To summarize, we clearly demonstrated that incorporating the evolution of the VNR across the

first five decoder iterations into more complex classification algorithms such as logistic regression

or supervised autoencoders leads to gains in the overall classification performance in particular in

comparison to hard threshold baselines. This conclusion holds for various SNR-values, subcode

lengths and channel conditions. Implications of these findings for the system performance will

be discussed in Sec. IV-C.

We restrict the investigation of history features to the SAE classifier as the best-performing

classifier from the previous section. However, we checked that the qualitative conclusions about

the importance of history features hold irrespective of the classification algorithm under consid-

eration. In Tab. IV we discuss the impact of history features on the classification performance
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in addition to the VNR-features discussed above.

TABLE IV

COMPARING CLASSIFICATION PERFORMANCE BASED ON AUC-PR UPON INCLUDING HISTORY FEATURES (FOR SAE).

features 4.0dB 1/2 ped 3.5dB 1/2 ped 3.5dB 1/2 veh

VNR 0.834 0.847 0.851

VNR+VNR HIST 0.860 0.872 0.852

VNR+EUCD HIST 0.883 0.892 0.861

Irrespective of SNR, subcode length and underlying pedestrian or vehicular channel model,

we see an improvement in classification performance upon including history features with best

results achieved by incorporating euclidean distance features. History information seems to lead

to larger improvements in the pedestrian channel compared to the vehicular channel. This is in

line with the the channel conditions remaining unchanged for a longer time in the pedestrian

compared to the vehicular case.

There are different caveats to this result. First of all, as discussed in Sec. III-A, the euclidean

distance is only known to the receiver if the underlying codeword is known as it would be the

case for a previous pilot transmission, which would however lead to latency overheads. Therefore

the result including euclidean history features most likely overestimates the improvements in

classification performance that can be obtained from using history features. Secondly, the use

of history features is at tension with the assumption of an independent channel realization for

the retransmission in the sense of Pe′|e = Pe as used in our system model. It is very unlikely

that the improvements in classification performance can compensate the loss of approximately

one order of magnitude in the error rate for the retransmission of Pe′|e ≈ 10−2 using the same

channel compared to the baseline BLER of the order of 10−3 for an independent retransmission.

Therefore the system level analysis is carried out using VNR-features only. Nevertheless the

results put forward here stress the prospects of further investigations of features that explicitly

characterize the channel state such as explicit channel state information that could have been

obtained by a pilot transmission preceding the transmission.

C. System Performance

We start by discussing system performance based on the simple probabilistic model for E-

HARQ with unlimited system resources as introduced in Sec. II-A. The results are obtained
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Fig. 5. Selected examples for system performance in the pedestrian channel for two-retransmission E-HARQ with unlimited

system resources.

straightforwardly from the FNR-FPR-curves presented in Sec. IV-B using Eqs. 1 and 5 or the

corresponding generalizations for multiple retransmissions Eqs.14 and 21. Here we adopt Pe′|e =

Pe as in Sec. II-B. Here we present results for two retransmissions that are possible for E-HARQ

in both TTI scenarios discussed in Sec.II-B. In fact, increasing the number of retransmissions

beyond two does not lead to further noticeable improvements in the given FNR range. In all

cases effective BLERs of the order 10−5 are attainable. Decreasing the subcode length from

5/6 to 1/2 while keeping the same effective BLER of 1 · 10−5 as a definite example requires an

increase of 40% and 45% in retransmissions at SNR 4 dB and 3 dB respectively. Correspondingly,

decreasing the SNR for fixed subcode length from 4 dB to 3 dB while again keeping the effective

BLER fixed leads to an overhead of 70% and 77% in retransmissions for subcode 5/6 and 1/2

respectively. However, as discussed in Sec.II-C, the presented effective BLERs only represent

theoretical lower bounds for actual packet failure rates that are achievable in actual systems as

they do not incorporate scheduling effects. In this infinite system setting there is no distinguished

working point for the classifier and the only way of discriminating between different classifiers

in the system setting is to rank by the number of expected transmissions for fixed effective error

probability.

Fig. 6 shows exemplary results of the packet failure rate over the FNR of the E-HARQ schemes

under medium (PA,UE = 0.3) and high system load (PA,UE = 0.36) together with the regular

HARQ-baseline and the infinite system results from Eq. 14. The upper figures Figs. 6(a) and 6(b)

show the long TTI design, as described in Sec. II-B, at 3.5 dB. For the high load (Fig. 6(a)) as well
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Fig. 6. Exemplary system performance comparison for rate 1/2 and 5/6 prediction schemes in high load and medium load

scenarios (blue dashed line indicates FNReval).

as the medium load (Fig. 6(b)) scenarios, the E-HARQ schemes achieve a superior performance

compared to the regular HARQ thanks to the additional retransmission which is possible within

the same latency constraint. However, a packet failure rate less than 10−5 is only achieved in

the medium load scenario. Here, we note that the actual performance of the E-HARQ schemes

is approximated well by the approach with infinite resources, at least for high packet failure

rates above 10−5. Only in the lower region an attenuation of the decrease is visible, whereas

all prediction schemes achieve a comparable performance. In the high load scenario in Fig.6(a),

we see the trade-off behavior, discussed in Sec. II-C. The packet failure rate decreases only up

to a certain minimum at the optimal FNR-FPR trade-off and starts increasing after passing that

point. So, lowering the FNR further after passing that point increases the packet failure due to
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the resource shortage. In this region, the actual performance of the prediction schemes becomes

critical. Hence, SAE and LR have the lowest optimum. HT0 and HT5 perform worse at their

optimal operation points, whereas HT0 is still performing better than HT5.
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Fig. 7. Effects of the scheduling gain in the high load regime for the strict and relaxed latency constraint.

The resource shortage effect is clearly visible in Fig. 7, where the same load is applied in

both scenarios but the latency constraint is relaxed in Fig. 7(b). As obvious in Fig. 7(a), the

packet failure rate for all schemes is far away from the targeted packet failure rate of 10−5.

With a relaxed latency constraint, as shown in Fig. 7(b), the performance is closer to the target

packet failure rate. This improvement is explainable by two effects. First, the E-HARQ schemes

benefit from the additional retransmission, which is possible in the relaxed latency constraint

and thus in total achieve still a better performance than the regular HARQ. However, the gap

is smaller compared to the normal latency constraint. Especially in the high load scenario, the

regular HARQ profits from the increased scheduling flexibility although it can only perform the

same number of HARQ retransmissions. The resource shortage effect is also observable for the

regular HARQ performance comparing the medium load and the high load scenarios. It is notable

that the regular HARQ could at least achieve a packet failure rate less than 10−4 in the medium

load scenario, whereas it is performing even worse in the high load scenario. We can see that

even more clearly in the short TTI design in Figs. 6(c) and 6(d). In the medium load scenario in

Fig. 6(d), the regular HARQ achieves a packet failure rate of almost 10−6, which corresponds

approximately to the ideal performance of HARQ. In this system setup the regular HARQ

makes use of the whole scheduling flexibility and thus, at least for the medium load scenario,
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the influence of scheduling probabilities can be neglected for the regular HARQ. Despite the

limited scheduling flexibilities of the E-HARQ schemes, they achieve a better performance than

the regular HARQ. However, this changes in the high load scenario in Fig. 6(c). Here, we

observe that the regular HARQ benefits from its scheduling gain and thus, achieves the lower

packet failure rate. In the high load scenario, we see that all prediction schemes achieve a similar

performance, except the HT0 which is remarkably less performing than the others.

As already visible in the previous results, there is no clear winning scheme for all the scenarios.

However, to compare the overall performance of the schemes, we introduce the total score

ts =
∑

t log10
Ppfr,s,t

mins Ppfr,s,t
, where t is the enumerator over all SNRs and prediction rates and s

is the enumerator over all HARQ schemes. In Tab. V we present the results for all scenarios,

where the ”<” sign indicates that an FNR larger than the optimal FNR has been used for

evaluations. As already notable in Fig. 6, the available data does not allow arbitrary small FNRs

and thus the optimal operation point cannot be reached for the medium load case. Hence, we

used FNReval = 8 · 10−4 for the medium load evaluations since it provides a sufficiently reliable

estimation. The evaluation at fixed FNR underestimates the overall performance compared to

regular HARQ but allow a reliable ranking between different classifiers. Obviously, for reaching

the optimal point of operation more data is required in the medium load case.

Nevertheless, in the medium load regime, LR achieves by far the best overall performance.

The other E-HARQ schemes achieve a similar performance, where HT0 is able to achieve a

slightly better performance than the other two. Interestingly here, SAE has a worse performance

compared to LR although it was the best performing classifier in the previous section. A closer

inspection reveals that for very low FNR SAE cannot keep up with the other classifiers. Especially

that region, being not relevant for the performance metrics of the previous section, explains the

contradicting results. However, the expected performance for SAE is observed going to the high

load regime. Here, SAE and LR are the best performing E-HARQ schemes far ahead HT0, HT5

and regular HARQ. As already noted in Fig. 6, in the high load regime the performance at higher

FNRs is key. Hence, SAE is again in a well-operating region. In this region, we also note that

HT0 is performing the worst among the classifiers though having the second-best performance

in the medium load regime.

Summa summarum, E-HARQ is able to achieve large gains in means of packet failure rate

compared to regular HARQ under latency constraints. Especially, LR is a promising approach,

which achieves a good overall performance in high load as well as medium load regimes. The



22

SAE as best-performing algorithm in the high-load case and the more extendable approach

compared to LR might provide a viable alternative if the performance at very low FNRs is

improved.

TABLE V

COMPARING SYSTEM PERFORMANCE AT THEIR OPTIMAL FNR-FPR TRADE-OFF, AS DESCRIBED IN SEC. II-C.

scenario regular HARQ HT0 HT5 LR SAE

m
ed

iu
m

lo
ad

3.0dB 1/2 ped 8.59 · 10−5 < 6.26 · 10−6 < 6.28 · 10−6 < 6.13 · 10
−6 < 6.18 · 10−6

3.5dB 1/2 ped 4.48 · 10−5 < 3.43 · 10−6 < 3.80 · 10−6 < 3.40 · 10
−6 < 3.67 · 10−6

4.0dB 1/2 ped 2.36 · 10−5 < 1.93 · 10−6 < 1.92 · 10−6 < 1.88 · 10
−6 < 1.92 · 10−6

3.0dB 5/6 ped 8.59 · 10−5 < 6.36 · 10−6 < 6.15 · 10−6 < 6.08 · 10−6 < 5.99 · 10
−6

3.5dB 5/6 ped 7.86 · 10−6 < 2.25 · 10−6 < 2.22 · 10
−6 < 2.22 · 10

−6 < 2.23 · 10−6

4.0dB 5/6 ped 1.62 · 10−6 < 1.40 · 10
−6 < 1.40 · 10

−6 < 1.40 · 10
−6 < 1.40 · 10

−6

3.5dB 1/2 veh 4.48 · 10−5 < 3.47 · 10−6 < 3.48 · 10−6 < 3.37 · 10
−6 < 3.68 · 10−6

total score ts 6.2577 0.0685 0.0936 0.0075 0.0866

h
ig

h
lo

ad

3.0dB 1/2 ped 2.72 · 10−4
5.75 · 10−5

5.87 · 10−5
5.20 · 10−5

5.17 · 10
−5

3.5dB 1/2 ped 1.60 · 10−4
3.99 · 10−5

4.13 · 10−5
3.78 · 10

−5
3.83 · 10−5

4.0dB 1/2 ped 9.56 · 10−5
2.94 · 10−5

2.88 · 10−5
2.76 · 10

−5
2.81 · 10−5

3.0dB 5/6 ped 2.72 · 10−4
5.59 · 10−5

4.99 · 10−5
4.89 · 10−5

4.70 · 10
−5

3.5dB 5/6 ped 1.61 · 10−5
2.05 · 10−5

1.61 · 10
−5

1.65 · 10−5
1.68 · 10−5

4.0dB 5/6 ped 9.32 · 10
−6

1.33 · 10−5
1.30 · 10−5

1.29 · 10−5
1.28 · 10−5

3.5dB 1/2 veh 1.60 · 10−4
3.88 · 10−5

4.06 · 10−5
3.64 · 10

−5
3.64 · 10

−5

total score ts 3.2918 0.4599 0.3306 0.1713 0.1703

V. SUMMARY AND CONCLUSIONS

In this work we investigated Machine Learning techniques for E-HARQ by means of more

elaborate classification methods to predict the decoding result ahead of the final decoder itera-

tion. We demonstrated that more complex estimators such as logistic regression or supervised

autoencoder that exploit the evolution of the subcodeword during the first few decoder iterations

lead to quantitative improvements in the prediction performance over baseline results across

different SNR and channel conditions. We put forward a simple probabilistic model and a

more elaborate system model incorporating scheduling effects to evaluate system performance

in a realistic environment. In this way we were able to demonstrate the practical feasibility of

reaching effective packet error rates of the order 10−5 as required for URLLC across a range of

different SNRs, subcode lengths and system loads. More importantly, we showed that enabling
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more HARQ layers by introducing E-HARQ improves the overall reliability over regular HARQ

under strict maximum latency constraints.

Further improvements of the classification performance are conceivable extending the approach

presented in this work. Our results suggest that history features incorporating channel information

from previous transmissions positively influence the classification performance but remain to be

investigated in more detail. Similarly it seems very likely that classification algorithms could

profit from intra-message features that go beyond the simple averaging features such as VNRs

considered in this work, which ideally directly incorporate the code structure of the underlying

channel code. However, such features suffer from high dimensionality and large correlations.

Here a challenge remains to identify the most discriminative set of input features and appropriate

classification algorithms to further improve the classification performance.

Ultimately, more advanced classification algorithms, which are within reach using techniques

presented in this work, might allow more fine-grained feedback instead of a binary NACK/ACK

response. Incorporating this information on the level of the feedback protocol would allow to

design custom feedback schemes with potentially large latency gains.
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APPENDIX A

PROBABILISTIC MODEL FOR MULTIPLE-RETRANSMISSION E-HARQ

In this section, we present the generalization of the results from Sec. II-A. These are obtained

straightforwardly using the same formalism as above. The generalization of the effective error

probability from Eq. 1 to the case of n retransmissions is given by the iterative relation

pBLE,eff,n = PePH,e(1, n) , (14)

where for j ≤ n:

PH,e(j, n) =Pfn,eff + (1− Pfn,eff)Pe(j)|e(j−1)∧...∧e(0) · PH,e(j + 1, n) , (15)
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and otherwise PH,e(j, n) = 1, which reduces to Eq. 1 for n = 1. For simplicity we can work

with independent retransmissions i.e. Pe(j)|e(j−1)∧...∧e(0) = Pe, where we used the shorthand

notation Pe(j)|e(j−1)∧...∧e(0) ≡ P(e(j)=1)|(e(j−1)=1)∧...∧(e(0)=1). Explicit expression for up to three

retransmissions are in this case given by

pBLE,eff,1 =Pe (Pfn,eff + (1− Pfn,eff)Pe) , (16)

pBLE,eff,2 =Pe(Pfn,eff + (1− Pfn,eff)Pe (Pfn,eff + (1− Pfn,eff)Pe)) , (17)

pBLE,eff,3 =Pe(Pfn,eff + (1− Pfn,eff)Pe(Pfn,eff + (1− Pfn,eff)Pe (Pfn,eff + (1− Pfn,eff)Pe))) . (18)

If we denote the set of binary sequences of length n by Sn, the probability Pr,n for having n

retransmissions is given by

Pr,n =
∑

(x0,x1,...xn−1)∈Sn

n−1
∏

i=0

(1− Pfn,eff)
xiPfp,eff

1−xi

n−1
∏

j=0

P(e(j)=xj)|(e(j−1)=xj−1)∧...∧(e(0)=x0) , (19)

which again reduces to Eq. 3 for n = 1. Again we may set P(e(j)=xj)|(e(j−1)=xj−1)∧...∧(e(0)=x0) = Pe

for independent transmissions. In this case Eq. 19 simplifies to

Pr,n = (Pe(1− Pfn,eff) + (1− Pe)Pfp,eff)
n

(20)

The total number of expected transmissions 〈∆Tn〉 is then simply given by

〈∆Tn〉 =
n
∑

i=1

i · Pr,i . (21)

APPENDIX B

SUPERVISED AUTOENCODER FOR SUPERVISED ANOMALY DETECTION

The supervised autoencoder is a neural-network-based supervised anomaly detection algorithm.

It enjoys a number of advantages compared to for example shallow neural network classifiers

applied directly to the input data that arise from the fact that the classifier is not applied to the

data directly but rather to the bottleneck features of an autoencoder. Therefore it is able to work

in heavily imbalanced scenarios as the one considered in this work and does not suffer from

highly correlated input.

For the construction of the SAE we leverage the approach put forward in [21] albeit in

a supervised anomaly detection setting. Similar to their work we use a regular multi-layer

fully-connected autoencoder with L2 loss as a backbone. In addition, we jointly train a fully-

connected classifier operating on the bottleneck features that is trained using cross entropy loss,
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see Fig. 8. The idea behind the joint training is to allows the autoencoder to not only build

a reduced representation but also to build bottleneck features that contain most discriminative

information for the classification task. We also experimented with using features derived from

the reconstruction error (measured using cosine distance and reduced Euclidean distance) as

additional input to the classifier as proposed in [21] but found no improvement.
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Fig. 8. Architecture for supervised anomaly detection using a jointly trained supervised autoencoder (x: input, xrec: reconstructed

input, xbot: bottleneck features, y: predicted label).

There are multiple ways of preventing overfitting in this setting: early stopping, reducing the

bottleneck dimension, implementing the SAE as a denoising autoencoder [22] or regularization

using dropout [23]. In our case dropout regularization both in the classifier as well as in the

autoencoder itself proved most effective.

The network configuration reads for the autoencoder [FC(d,25), FC(25,10), FC(10,3), FC(3,10),

FC(10,25), Lin(25,d)] and for the classifier [FC(3,10), FC(10,5), Lin(5,2), SM] with FC(x,y) ≡

[Lin(x,y), BN, ReLU, DO] and input dimension d. Here Lin(x,y) denotes a linear transformation

layer, BN a Batch Normalization-layer [24], ReLU a ReLU activation layer, DO a dropout layer

at a dropout rate fixed via hyperparameter tuning (both 0.2) and SM a softmax activation layer.

Optimization is performed using the Adam optimizer [25] at learning rate 0.001. To stabilize

training oversampling the minority class samples by a factor of 100 turned out to be beneficial.

APPENDIX C

RESOURCE DISTRIBUTION FUNCTION OF A SYSTEM WITH FINITE RESOURCES

The resource distribution function describes the probability of having a specific number of

resources N to be scheduled at a time slot t. With the aforementioned system setup mainly
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three components contribute to resource allocations. The first are the packet arrival processes

of the individual UEs. These pose the main component. Additionally, there are the HARQ

retransmissions, which depend on the error probability of the underlying channel code for a

specific channel. However, to simplify analysis a uniform BLER has been assumed for each of

the transmissions. The last component is the overload of the previous time slot due to resource

shortage, which is then transfered to the next time slot. Hence, the resource distribution is

described as follows:

Pres(N, t) =
∑

n,m,o∈S

PA(n)PH(m, t− TRTT)POL(o, t− 1) , (22)

with S = {n,m, o ∈ N0 : n+m+ o = N}, N ∈ N0 and t ∈ Z and PA(n) being the probability

of having n arrival processes, PH(m) being the probability of having m HARQ retransmissions

in time slot t and POL(o, t) being the probability of having o resources overload in the time slot

t to be transferred to the next time slot.

The probability of arrival processes for NUE UEs is described straightforwardly as a binomial

distribution for n ≤ NUE:

PA(n) =

(

NUE

n

)

(PA,UE)
n(1− PA,UE)

NUE−n , (23)

and otherwise PA(n) = 0, where PA,UE is the probability of packet arrival of one UE at one time

slot. This modeling implicitly assumes that one UE can only have at most one new transmission

per time slot.

Formulating PH is a bit more intricate since for a limited allowed number of HARQ re-

transmissions initial packet transmissions have to be distinguished probability-wise from HARQ

retransmissions. This would require to distinguish initial transmissions and first, second up to n

retransmissions as separate dependencies in Pres and would require to specify scheduling rules,

which would considerably complicate the whole analysis. However, this limitation is overcome

by allowing unlimited HARQ retransmissions. This implies that this approach cannot be used to

analyze for example single-retransmission HARQ since the HARQ retransmission term assuming

an infinite number of retransmissions as implemented below would drastically overestimate the

system load from HARQ retransmissions hence punishing FPR too much. Hence, PH is given

for t ≥ 0 and n ≤ Nres as:

PH(n, t) =
∞
∑

k=n

Pres(k, t)

(

min(k,Nres)

n

)

· Pr
n(1− Pr)

(min(k,Nres)−n) , (24)
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(a) NUE = 30 (b) NUE = 20

Fig. 9. Non-converging and converging resource distribution functions over time of an overloaded system (left) and a balanced

system (right).

and otherwise PH(n, t) = 0 except for PH(0, t < 0) = 1, where Nres is the number of system

resources per time slot, TRTT is the HARQ RTT and the single-retransmission probability Pr =

(1−Pfn)Pe +Pfp(1−Pe) as in Eq. 5. Because of notational reasons, we chose using an infinite

sum, which can be easily replaced by splitting the sum at Nres and replacing the part from Nres+1

to ∞ by
(

1−
∑Nres

k=0 Pres(k, t− TRTT )
)

(

Nres

n

)

(Pr)
n(1− Pr)

(Nres−n). Still, this way of evaluating

the HARQ-contributions in the system still overestimates the load from retransmissions and

therefore underestimates the system performance.

The last component POL is simply defined by a back reference to the resource distribution

function in the previous slot:

POL(n, t) =







































Pres(Nres + n, t) , if t ≥ 0 ∧ n > 0

∑Nres

k=0 Pres(n, t) , if t ≥ 0 ∧ n = 0

1 , if t < 0 ∧ n = 0

0 , otherwise

. (25)

For the sake of simplicity, we may assume TRTT = 1. This assumption makes the resource

distribution function at time slot t only dependent on the previous time slot t− 1 and is a valid

assumption for the evaluated early HARQ schemes.

Here, the interesting question is, if the resource distribution converges for t → ∞. By

simulating the propagation of Pres(N, t) over t, we gain an insight on that question, as presented
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in Fig. 9. As obvious in Fig. 9(a), choosing the parameters such that the system is massively

overloaded results in divergence of the resource distribution function. However, in case of a

balanced system the resource distribution function shows a strong convergence behavior, as

noticeable in Fig. 9(b). From Eq. 22, the conditioned resource distribution function for t > 0

and Nt ≥ Nt−1 −Nres follows as

Pres(Nt|Nt−1) =

Nup
∑

n=0

PA(n)PH(Nup − n|Nt−1) , (26)

where Nup = Nt −max(Nt−1 −Nres, 0) and for m ≤ min(Nres, Nt−1):

PH(m|Nt−1) =

(

min(Nt−1, Nres)

m

)

(Pr)
m(1− Pr)

(min(Nt−1,Nres)−m) , (27)

otherwise PH(m|Nt−1) = 0.

APPENDIX D

SCHEDULING PROBABILITY IN A MODERATELY LOADED FINITE SYSTEM

The scheduling probability P1 as the probability that a transmission arriving at t0 is scheduled

after ∆t TTIs, is given as

P1(t0,∆t) =
∞
∑

k0=Nres

Pres(k0, t0)

(

1−
Nres

k0 + 1

) ∞
∑

k1=Nres

Pres(k1|k0)

(

1−
Nres

k1 + 1

)

· · ·

∞
∑

k(∆t−1)=Nres

Pres(k(∆t−1)|k(∆t−2))

(

1−
Nres

k(∆t−1) + 1

)

Nres−1
∑

k=0

Pres(k|k(∆t−1)) +
∞
∑

k=Nres

Pres(k|k(∆t−1))
Nres

k + 1
. (28)

As obvious, P1 crucially depends on the resource distribution function Pres(N, t), which is

the probability that N resources arrive at time slot t, and its probability distribution conditioned

on the previous number of resource arrivals Pres(kt|kt−1). The properties and formulation of this

distribution is evaluated more in detail in App. C.

However, P1(t0,∆t) the exact formulation of P1(t0,∆t) poses computational problems due

to the infinite sums and the exponential growth of computation for increasing ∆t. Hence, we

introduce Lemma 1 to simplify the computation of the scheduling probability.

Lemma 1. For a moderately loaded system with
∑Nmax

k=0 P (k, t) ≈ 1 and Nmax ' Nres, the

resource distribution function is approximated for sufficiently large time slots t by Pres(Nt, t) ≈
∑Nres−1

k=0 Pres(k, t− 1)Pres(Nt|k) +
∑Nmax

k=Nres
Pres(k, t− 1)Pres(Nt|Nres) .
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Proof. Assuming a converging behavior of the resource distribution function, there exits a time

slot t0 and a lower bound Nmin and an upper bound Nmax, such that
∑Nmax

k=Nmin
Pres(k, t) ≈ 1

for all t ≥ t0. Additionally for an non-heavily loaded system which is required for URLLC

traffic, we assume Nmax ' Nres. Also, the lower bound is assumed to be sufficiently large,

Nmin > Nmax −Nres.

The resource distribution function at time slot t1 > t0 is formulated as

Pres(Nt1 , t1) =
∞
∑

Nt1−1=0

Pres(Nt1−1, t1 − 1)Pres(Nt1 |Nt1−1) . (29)

The sum can be divided into two regions, below Nres and above. Since Pres(N, t) → 0 for

any N > Nmax and Nmax is close to the number of resources of the system, we approx-

imate the conditional function by assuming Nres resources in the previous time slot. For a

moderately loaded system, this is a valid assumption, since the resource probability distribution

function is decreasing fast for N > Nres. Only for small arguments Nt close to 0 the deviation

increases. However, the constraint regarding Nmin, which prevents underutilization, ensures

that Pres(Nt1 |Nt1−1) is getting very small in that region anyway. Hence, we approximate the

conditional resource distribution probability for Nt−1 > Nres by

Pres(Nt|Nt−1) ≈
Nt
∑

n=0

PA(n) · PH(Nt − n|Nres) . (30)

Using Lemma 1 for ∆t > 0, the scheduling probability is approximated by

P1(t0,∆t) ≈
Nmax
∑

k0=Nres

Pres(k0, t0)

(

1−
Nres

k0 + 1

)

(

Nmax
∑

k1=Nres

Pres(k1|Nres)

(

1−
Nres

k1 + 1

)

)(∆t−1)

(

Nres−1
∑

k=0

Pres(k|Nres) +
Nmax
∑

k=Nres

Pres(k|Nres)
Nres

k + 1

)

. (31)


